Conjunctive Spaces

Kerry M. Soileau

May 28, 2016

Abstract

We introduce the concept of a conjunctive space. Every reflexive, symmetric relation induces a conjunctive space. This leads to a general definition of "point" via an induced partial order.

Keywords. conjunctive space, partial order, chain, point, nest.

1 Introduction

Euclid [1] defined a point as "that which has no part." One could equivalently define a point x in a set as something with the property that, if it is a member of sets y and z, then y and z meet each other. This inspires a more general definition of a point: If we have defined the notion of "contact" between two entities, we can immediately define the notion of "point" as follows: x is a point if and only if whenever x contacts y and z, then y and z contact each other. Clearly "contact" is a relation; in this section we denote it by the binary operator \circ . We stipulate some intuitively reasonable properties of \circ .

Reflexivity Every entity contacts itself: $x \circ x$

Symmetry Contact is mutual: $x \circ y \Leftrightarrow y \circ x$

Equivalence An entity is uniquely determined by its contacts: $\forall z \ (x \circ z \leftrightarrow y \circ z) \Rightarrow$

x = y

We call any such relation a conjunctive relation. We may now define a point:

$$x \text{ is a point} \Leftrightarrow \forall y, z ((x \circ y \text{ and } x \circ z) \to y \circ z).$$
 (1.1)

In the next section will begin with a more precise definition of a conjunctive relation, and develop its properties.

2 Conjunctive Relation

Let X be a nonempty set.

Definition We say that a relation \circ on X is conjunctive if and only if

(1) $\forall x \in X (x \circ x),$ (2) $\forall x_1, x_2 \in X (x_1 \circ x_2 \leftrightarrow x_2 \circ x_1),$ and (3) $\forall y \in X (x_1 \circ y \leftrightarrow x_2 \circ y)$ implies $x_1 = x_2.$

Notation We call a nonempty set X together with a conjunctive relation \circ , a conjunctive space (X, \circ) .

Remark Any reflexive and symmetric relation induces a conjunctive space. Indeed, let R be such a relation on a set Y. Define X to be the collection of equivalence classes under the equivalence relation satisfying $y_1 \sim y_2$ if and only if $\forall z \in Y (y_1 R z \leftrightarrow y_2 R z)$. For any equivalence classes \bar{y}_1, \bar{y}_2 in X, we define $\bar{y}_1 \circ \bar{y}_2$ if and only if $y_1 R y_2$. It is easily seen that (X, \circ) is a conjunctive space.

Definition For $x \in X$, we define the function $\alpha : X \to 2^X$ satisfying

$$\alpha(x) = \{ y \in X; x \circ y \}.$$
(2.1)

Note that α has the following properties:

- 1. $\forall x \in X, x \in \alpha(x)$,
- 2. $\forall x, y \in X, x \in \alpha(y)$ and $y \in \alpha(x)$, and
- 3. α is injective.

Definition For $a, b \in X$, we define the join and meet of a and b as follows. We say that $x = a \lor b$ if and only if $\forall z \in X (x \circ z \leftrightarrow a \circ z \text{ or } b \circ z)$. We say that $x = a \land b$ if and only if $\forall z \in X (x \circ z \leftrightarrow a \circ z \text{ and } b \circ z)$.

Examples

(1) Let X be some nonempty set, and define the relation $x_1 \circ x_2$ if and only if $x_1 = x_2$.

(2) Let X be a collection of nonempty subsets of some set Y. For any $x_1, x_2 \in X$, define the relation $x_1 \circ x_2$ if and only if $x_1 \cap x_2 \neq \emptyset$. An interesting instance of this example is obtained when we take

 $X = \{\{p \in \mathbb{Q}; p_1 \leq p \leq p_2\}; p_1, p_2 \in \mathbb{Q}, p_1 \leq p_2\}$. We call this the rational conjunctive space and will discuss it in greater detail below.

(3) Let X be the collection of collections of nested nonempty subsets of some nonempty set Y. For $N_1, N_2 \in X$, define the relation $N_1 \circ N_2$ if and only if $\forall n_1 \in N_1 \forall n_2 \in N_2(n_1 \cap n_2 \neq \emptyset)$.

(4) Let $\mathcal{L} = \mathcal{L}(A, \Omega, Z, I)$ be a propositional calculus with the usual operators $\{\neg, \land, \lor, \rightarrow, \leftrightarrow, 0, 1\} \subseteq \Omega$. Let Σ be the collection of sentences of \mathcal{L} . For finite $S \subseteq \Sigma$, define the operator Ξ such that $\Xi(S) \equiv \bigwedge_{x \in S} x$, with $\bigwedge_{x \in \emptyset} x \equiv 1$. Let $X = \{ \emptyset \subset S \subseteq \Sigma; S \text{ is finite}, \Xi(S) \neq 0 \}$. Define an equivalence relation on members of X such that $S_1 \sim S_2$ if and only if for all finite $T \subseteq \Sigma, \Xi(S_1 \cup T) \neq 0 \leftrightarrow \Xi(S_2 \cup T) \neq 0$. Consider the collection of equivalence classes $C = \{\overline{S}; S \in X\}$. For $S_1, S_2 \in X$, define the relation $\overline{S_1} \circ \overline{S_2}$ if and only if $\Xi(S_1 \cup S_2) \neq 0$.

(5) Let Σ be a nonempty collection of subsets of a set X, and let $a : X \to 2^X$ be a function such that $x \in a(x)$ and $x \in a(y) \leftrightarrow y \in a(x)$. Define a relation R on subsets of X such that C_1RC_2 if and only if

$$\forall C_3 \left(C_1 \subseteq \bigcap_{x_3 \in C_3} a(x_3) \Leftrightarrow C_2 \subseteq \bigcap_{x_3 \in C_3} a(x_3) \right).$$

(6) Consider the equivalence relation on groups satisfying $G_1 \sim G_2$ if and only if S is a simple subgroup of $G_1 \leftrightarrow S$ is a simple subgroup of G_2 . On the equivalence classes we then define the relation \circ satisfying $\bar{G}_1 \circ \bar{G}_2 \leftrightarrow$ there exists a simple group S (depending on G_1 and G_2) that is a subgroup of both G_1 and G_2 . As defined, \circ is a conjunctive relation.

Conjunctive Relation

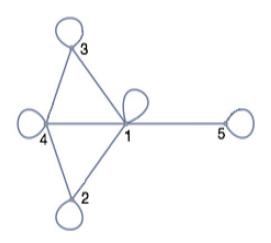


Figure 1: An example of a conjunctive relation.

3 Cartesian Products of Conjunctive Spaces

Given two conjunctive spaces (X, \circ) and (Y, \bullet) , we may define the product space $(X, \circ) \times (Y, \bullet)$ as the conjunctive space $(X \times Y, \star)$ satisfying

$$(x_1, y_1) \star (x_2, y_2) \Leftrightarrow x_1 \circ x_2 \text{ and } y_1 \bullet y_2.$$
 (3.1)

It is straightforward to verify the reflexive and symmetric properties of this definition. To show the equivalence property, suppose for some $(x_1, y_1) \neq (x_2, y_2)$ we have $\forall (p, q) \in (X, Y) ((x_1, y_1) \star (p, q) \leftrightarrow (x_2, y_2) \star (p, q))$.

<u>Case 1</u>: $x_1 \neq x_2$. This means $\forall (p,q) \in (X,Y) \ (x_1 \circ p \text{ and } y_1 \bullet q \leftrightarrow x_2 \circ p \text{ and } y_2 \bullet q)$, which implies $\forall p \in X \ (x_1 \circ p \text{ and } y_1 \bullet y_1 \leftrightarrow x_2 \circ p \text{ and } y_2 \bullet y_1)$. Since we always have

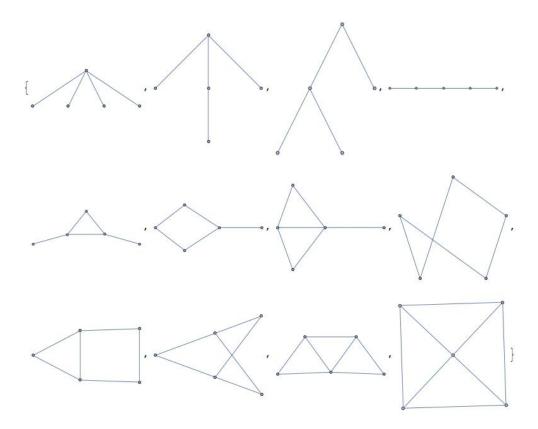


Figure 2: Connected Conjunctive Spaces On Five Points

 $y_1 \bullet y_1$, this means $\forall p \in X (x_1 \circ p \leftrightarrow x_2 \circ p \text{ and } y_2 \bullet y_1)$. Since by assumption $x_1 \neq x_2$, we can find p_1 such that $x_1 \circ p_1$ is true and for which $x_2 \circ p_1$ is false. Since $x_1 \circ p_1$, and $x_1 \circ p_1 \leftrightarrow x_2 \circ p_1$ and $y_2 \bullet y_1$, we get $x_2 \circ p_1$ for a contradiction.

<u>Case 2</u>: $y_1 \neq y_2$. A contradiction is obtained with a similar argument. Thus we have $(x_1, y_1) = (x_2, y_2)$.

Proposition 3.1 The product space $(X \times Y, \star) \equiv (X, \circ) \times (Y, \bullet)$ has an induced partial order \prec_{\star} satisfying

$$(x_1, y_1) \prec_{\star} (x_2, y_2) \Leftrightarrow x_1 \prec_{\circ} x_2 \text{ and } y_1 \prec_{\bullet} y_2 \tag{3.2}$$

Proof (\Rightarrow) Suppose $(x_1, y_1) \prec_{\star} (x_2, y_2)$. Fix p, q such that $p \circ x_1$ and $q \bullet y_1$. Then $(p, q) \star (x_1, y_1)$. Since $(x_1, y_1) \prec_{\star} (x_2, y_2)$, we have $(p, q) \star (x_2, y_2)$, which implies $p \circ x_2$ and $q \bullet y_2$, whence $x_1 \prec_{\circ} x_2$ and $y_1 \prec_{\bullet} y_2$.

(⇐) Suppose $x_1 \prec_{\circ} x_2$ and $y_1 \prec_{\bullet} y_2$. Fix (p,q) such that $(p,q) \star (x_1, y_1)$. Then $p \circ x_1$ and $q \bullet y_1$. Since $x_1 \prec_{\circ} x_2$ and $y_1 \prec_{\bullet} y_2$, we get $p \circ x_2$ and $q \bullet y_2$, whence $(p,q) \star (x_2, y_2)$. This implies $(x_1, y_1) \prec_{\star} (x_2, y_2)$.

Proposition 3.2 The points of the product space $(X \times Y, \star) \equiv (X, \circ) \times (Y, \bullet)$ are the members $(p_1, p_2) \in (X, Y)$ such that p_1 is a point in (X, \circ) , and p_2 is a point in (Y, \bullet) .

Proof (\Rightarrow) Suppose (p_1, p_2) is a point in $(X \times Y, \star)$. Fix $x_1 \in X$ and $y_1 \in Y$ such that $p_1 \circ x_1$ and $p_2 \bullet y_1$. Then $(p_1, p_2) \star (x_1, y_1)$. Since (p_1, p_2) is a point, we have $(p_1, p_2) \prec_{\star} (x_1, y_1)$, which implies $p_1 \prec_{\circ} x_1$ and $p_2 \prec_{\bullet} x_2$. These imply p_1 is a point in (X, \circ) , and p_2 is a point in (Y, \bullet) . (\Leftarrow) Suppose p_1 is a point in (X, \circ) , and p_2 is a point in (Y, \bullet) . Fix (x_1, y_1) such that $(p_1, p_2) \star (x_1, y_1)$. Then $p_1 \circ x_1$ and $p_2 \bullet y_1$. Since p_1 and p_2 are points, we get $p_1 \prec_{\circ} x_1$ and $p_2 \prec_{\bullet} y_1$. This implies $(p_1, p_2) \prec_{\star} (x_1, y_1)$, so (p_1, p_2) is a point in $(X \times Y, \star)$.

4 A Conjunctive Relation Induces a Partial Order

Let (X, \circ) be a conjunctive space.

Definition Define the order \prec satisfying $x_1 \prec x_2$ if and only if

 $\forall y \in X \, (x_1 \circ y \to x_2 \circ y).$

Proposition 4.1 \prec is a partial order on X.

Proof (1) Let $x \in X$. Since clearly $\forall y \in X (x \circ y \to x \circ y)$, it follows that $x \prec x$. (2) Suppose $x_1 \prec x_2$ and $x_2 \prec x_1$. Fix $y \in X$ such that $x_1 \circ y$. Since $x_1 \prec x_2$, we have $x_2 \circ y$, thus $\forall y \in X (x_1 \circ y \leftrightarrow x_2 \circ y)$, which by property 3 of \circ implies $x_1 = x_2$. (3) Suppose $x_1 \prec x_2$ and $x_2 \prec x_3$. Fix $y \in X$. Then $x_1 \circ y \to x_2 \circ y$ and $x_2 \circ y \to x_3 \circ y$, implying $x_1 \circ y \to x_3 \circ y$, thus $\forall y \in X (x_1 \circ y \to x_3 \circ y)$. But this just means $x_1 \prec x_3$.

Proposition 4.2 If $x_1 \prec x_2$, then $x_1 \circ x_3$ implies $x_2 \circ x_3$.

Proof Suppose $x_1 \prec x_2$ and $x_1 \circ x_3$. Since $x_1 \prec x_2$, we have $\forall y \in X (x_1 \circ y \to x_2 \circ y)$, so in particular $x_1 \circ x_3 \to x_2 \circ x_3$, and thus we get $x_2 \circ x_3$.

Corollary 4.3 If $x_1 \prec x_2$, then $x_1 \circ x_2$.

Proof Suppose $x_1 \prec x_2$. Then since $x_1 \circ x_1$, Proposition 4.2 immediately implies $x_2 \circ x_1$. This in turn implies $x_1 \circ x_2$.

Notation We write $\Phi(X, \circ)$ to denote the collection of chains of (X, \circ) under the induced partial order \prec .

Corollary 4.4 If $C \in \Phi(X, \circ)$, then $\forall x_1, x_2 \in C(x_1 \circ x_2)$.

Proof Suppose C is a chain and $x_1, x_2 \in C$. Then $x_1 \prec x_2$ or $x_2 \prec x_1$. In either case, from Corollary 4.3 we get $x_1 \circ x_2$, hence $\forall x_1, x_2 \in C (x_1 \circ x_2)$, as desired.

Proposition 4.5 Define a conjunctive relation \circ on the set Y of nonempty proper subsets of some nonempty set X, such that $x_1 \circ x_2 \leftrightarrow (x_1 \cap x_2 \neq \emptyset)$. Then $x_1 \prec x_2 \Leftrightarrow x_1 \subseteq x_2$.

Proof (\Rightarrow) Suppose $x_1 \prec x_2$. Then $\forall y \in Y (x_1 \circ y \to x_2 \circ y)$, i.e. $\forall y \in Y (x_1 \cap y \neq \emptyset \to x_2 \cap y \neq \emptyset)$. Since the set $x_2^c \in Y$, we have

 $x_1 \cap x_2^c \neq \emptyset \to x_2 \cap x_2^c \neq \emptyset$. If $x_1 \cap x_2^c \neq \emptyset$, this implication would give $x_2 \cap x_2^c \neq \emptyset$, which is clearly false, hence $x_1 \cap x_2^c = \emptyset$. But this just means $x_1 \subseteq x_2$.

(\Leftarrow) Suppose $x_1 \subseteq x_2$. Fix any $y \in Y$ such that $x_1 \cap y \neq \emptyset$. Since $x_1 \subseteq x_2$, we have $x_1 \cap y \subseteq x_2 \cap y$ and thus $x_2 \cap y \neq \emptyset$, hence $\forall y \in Y (x_1 \cap y \neq \emptyset \rightarrow x_2 \cap y \neq \emptyset)$. But this just means $x_1 \prec x_2$.

Remark In Example 1, $x_1 \prec x_2$ if and only if $x_1 = x_2$.

In Example 2, $x_1 \prec x_2$ if and only if $x_1 \subseteq x_2$.

In Example 3, $N_1 \prec N_2$ if and only if $\forall n_2 \in N_2 \exists n_1 \in N_1 (n_1 \subseteq n_2)$. Indeed, suppose $N_1 \prec N_2$, and for a contradiction suppose $\exists n_2 \in N_2 \forall n_1 \in N_1 (n_1 \setminus n_2 \neq \emptyset)$. By Corollary 4.3, we get $N_1 \circ N_2$. Fix $n_2 \in N_2$ such that $\forall n_1 \in N_1 (n_1 \setminus n_2 \neq \emptyset)$. Take $N_3 = \{n_1 \setminus n_2; n_1 \in N_1\}$. This is a chain of nonempty members. Clearly $\forall n_1 \in N_1 \forall n_3 \in N_3 (n_1 \cap n_3 \neq \emptyset)$, so since $N_1 \prec N_2$, we have $\forall n_2 \in N_2 \forall n_3 \in N_3 (n_2 \cap n_3) \neq \emptyset$, i.e. $\forall n_2 \in N_2 \forall n_3 \in \{n_1 \setminus n_2; n_1 \in N_1\} (n_2 \cap n_3) \neq \emptyset$, which is a clear contradiction, thus $\forall n_2 \in N_2 \exists n_1 \in N_1 (n_1 \subseteq n_2)$.

Conversely, suppose $\forall n_2 \in N_2 \exists n_1 \in N_1 \ (n_1 \subseteq n_2)$. Fix $n_2 \in N_2$. Fix N_3 such that $N_1 \circ N_3$. Then $\forall n_1 \in N_1 \forall n_3 \in N_3 \ (n_1 \cap n_3) \neq \emptyset$. Fix $n_3 \in N_3$. By hypothesis, we get $\exists n_1 \in N_1 \ (n_1 \subseteq n_2)$. Fix $n_1 \in N_1$ such that $n_1 \subseteq n_2$. Since $\forall n_1 \in N_1 \forall n_3 \in N_3 \ (n_1 \cap n_3) \neq \emptyset$, we get $n_1 \cap n_3 \neq \emptyset$. Since $n_1 \subseteq n_2$, we get $n_2 \cap n_3 \neq \emptyset$. Thus $\forall n_2 \in N_2 \forall n_3 \in N_3 \ (n_2 \cap n_3) \neq \emptyset$, which means $N_2 \circ N_3$. This gives $\forall N_3 \ (N_1 \circ N_3 \to N_2 \circ N_3)$, which means $N_1 \prec N_2$.

In Example 4, if $S_1 \cap \operatorname{Ann}(\Xi(S_2)) \neq \emptyset$, then $\bar{S}_1 \prec \bar{S}_2$ implies $S_1 \subseteq S_2$. Here $\operatorname{Ann}(y) \equiv \{z \in \Sigma; z \neq 0, y \land z = 0\}$ for $y \in \Sigma$. Indeed, suppose $\bar{S}_1 \prec \bar{S}_2$ and $S_1 \cap \operatorname{Ann}(\Xi(S_2)) \neq \emptyset$. For a contradiction, suppose $S_1 \not\subseteq S_2$. Fix $y \in S_1 \setminus S_2$. Since $\bar{S}_1 \prec \bar{S}_2$, $\forall S_3 \in X(\bar{S}_1 \circ \bar{S}_3 \to \bar{S}_2 \circ \bar{S}_3)$, i.e. $\forall S_3 \in X(\bigwedge_{x \in S_1 \cup S_3} x \neq 0 \to \bigwedge_{x \in S_2 \cup S_3} x \neq 0)$. Taking $S_3 = \{y\}$, this means $\bigwedge_{x \in S_1 \cup \{y\}} x \neq 0 \to \bigwedge_{x \in S_2 \cup \{y\}} x \neq 0$. Since $\bigwedge_{x \in S_1} x \neq 0$ and $S_1 \cup \{y\} = S_1$, we

get $\bigwedge_{x \in S_2 \cup \{y\}} x \neq 0$. This means $\left(\bigwedge_{x \in S_2} x\right) \land y \neq 0$, i.e. $\Xi(S_2) \land y \neq 0$, so we have $y \notin \operatorname{Ann}(\Xi(S_2))$. y was an arbitrary member of $S_1 \setminus S_2$, so $(S_1 \setminus S_2) \cap \operatorname{Ann}(\Xi(S_2)) = \emptyset$. $S_1 \cap S_2 \subset S_2$ and $S_2 \cap \operatorname{Ann}(\Xi(S_2)) = \emptyset$, so $(S_1 \cap S_2) \cap \operatorname{Ann}(\Xi(S_2)) = \emptyset$. This implies $S_1 \cap \operatorname{Ann}(\Xi(S_2)) = \emptyset$, for a contradiction. Therefore $S_1 \subseteq S_2$.

Next, note that if $\bar{S}_1 \prec \bar{S}_2$, then $\operatorname{Ann}(\Xi(S_2)) \subseteq \operatorname{Ann}(\Xi(S_1))$. Indeed, suppose $y \in \operatorname{Ann}(\Xi(S_2))$. Since $\forall S_3 \in X \left(\bigwedge_{x \in S_1 \cup S_3} x \neq 0 \to \bigwedge_{x \in S_2 \cup S_3} x \neq 0\right)$, taking $S_3 = \{y\}$ implies $\bigwedge_{x \in S_1 \cup \{y\}} x \neq 0 \to \bigwedge_{x \in S_2 \cup \{y\}} x \neq 0$. Since $\bigwedge_{x \in S_2 \cup \{y\}} x \neq 0$ is false, so is $\bigwedge_{x \in S_1 \cup \{y\}} x \neq 0$, and thus $\left(\bigwedge_{x \in S_1} x\right) \land y = 0$, so $y \in \operatorname{Ann}(\Xi(S_1))$, whence $\operatorname{Ann}(\Xi(S_2)) \subseteq \operatorname{Ann}(\Xi(S_1))$.

Remark $x \prec y \Leftrightarrow \alpha(x) \subseteq \alpha(y)$.

5 Points

Definition A point is any element $x \in X$ satisfying any of the following equivalent definitions:

- 1. $\forall y \in X (x \circ y \to x \prec y)$
- 2. $\forall y \in X (x \circ y \to \forall z \in X (x \circ z \to y \circ z))$
- 3. $\forall y, z \in X (x \circ y \land x \circ z \to y \circ z)$

Proposition 5.1 If x_1 is a point and $x_2 \prec x_1$, then x_2 is a point.

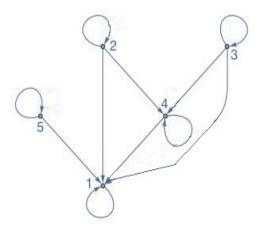


Figure 3: The partial order induced by the example in Figure 1.

Proof Suppose x_1 is a point and $x_2 \prec x_1$. Fix $y \in X$ such that $x_2 \circ y$. This is always possible because $x_2 \circ x_2$. Then since $x_2 \prec x_1$ and $x_2 \circ y$, we have $x_1 \circ y$. Since x_1 is a point, we have $x_1 \prec y$. Since $x_2 \prec x_1$, this implies $x_2 \prec y$. Hence $\forall y \in X (x_2 \circ y \rightarrow x_2 \prec y)$, which means x_2 is a point.

Proposition 5.2 If $x_1, x_2 \in X$ are points and $x_1 \circ x_2$, then $x_1 = x_2$.

Proof Suppose $x_1, x_2 \in X$ are points and $x_1 \circ x_2$. Then by definition of point, we have $x_1 \prec x_2$. Since $x_1 \circ x_2$, we have $x_2 \circ x_1$. Again by definition of point, we have $x_2 \prec x_1$. Since \prec is a partial order, we then have that $x_1 = x_2$.

Remark If $x \in X$ is a point, then $\forall y, z \in X (x \prec y \land x \prec z \rightarrow y \circ z)$.

Proof Suppose x is a point and fix $y, z \in X$ such that $x \prec y$ and $x \prec z$. By Corollary 4.3, we have $x \circ y$ and $x \circ z$. Since x is a point, we get $y \circ z$.

<u>The converse is not true</u>. For example, consider the simple conjunctive space consisting of the three distinct elements x, y, and z, with conjunctive relation \circ satisfying (exactly) $x \circ x$, $x \circ y$, $y \circ x$, $y \circ y$, $y \circ z$, $z \circ y$, and $z \circ z$. Then it is easily checked that x and z are points, but y is not. Further, it is easily checked that the induced partial order is described (exactly) by $x \prec x, x \prec y$, $y \prec y, z \prec y, z \prec z$. Thus we have $\forall p, q \in X (y \prec p \land y \prec q \rightarrow p \circ q)$ rather trivially, since the only critical choices of p and q are p = q = y, yielding the implication $y \prec y \land y \prec y \rightarrow y \circ y$ which is clearly satisfied.

Definition For $x \in X$, we define the sets $\iota(x) = \{y \in X; y \prec x\}$ and $\kappa(x) = \{y \in X; x \prec y\}$. Note that $\iota(x) \cap \kappa(x) = \{x\}$.

Remark x is a point $\Leftrightarrow \alpha(x) \subseteq \kappa(x)$.

Proposition 5.3 $\iota(a) \cap \iota(b) \neq \emptyset \Rightarrow a \circ b$

Proof Suppose $t \in \iota(a) \cap \iota(b)$. Since $t \in \iota(a)$, we have $t \prec a$, which implies $\forall y \in X \ (t \circ y \to a \circ y)$. In particular this means $t \circ b \to a \circ b$. Since $t \in \iota(b)$, and thus $t \prec b$, by Corollary 4.3 we have $t \circ b$. Thus it follows that $a \circ b$.

Proposition 5.4 If p is a point, then $\iota(p) = \{p\}$.

Proof Suppose p is a point and $b \in \iota(p)$. Then $b \prec p$. By Proposition 5.1, b is a point. Since $b \prec p$, then $b \circ p$, so by Proposition 5.2 we have that b = p. Thus $\iota(p) \subseteq \{p\}$. Clearly $p \in \iota(p)$, so $\{p\} \subseteq \iota(p)$, whence $\iota(p) = \{p\}$.

<u>The converse is not true</u>. In the example conjunctive space given above, the element y satisfies $\iota(y) = \{y\}$, yet y is not a point.

Proposition 5.5 $\iota(a) = \iota(b) \leftrightarrow a = b$

Proof Suppose $\iota(a) = \iota(b)$. Then

 $\{y \in X; \forall z \in X (y \circ z \to a \circ z)\} = \{y \in X; \forall z \in X (y \circ z \to b \circ z)\}.$ Since clearly $a \in \{y \in X; \forall z \in X (y \circ z \to a \circ z)\}$, we have

 $a \in \{y \in X; \forall z \in X (y \circ z \to b \circ z)\}, \text{ and thus } \forall z \in X (a \circ z \to b \circ z).$ Since clearly $b \in \{y \in X; \forall z \in X (y \circ z \to b \circ z)\}, \text{ we have}$

 $b \in \{y \in X; \forall z \in X (y \circ z \to a \circ z)\}, \text{ and thus } \forall z \in X (b \circ z \to a \circ z),$ whence $\forall z \in X (a \circ z \leftrightarrow b \circ z), \text{ and thus } a = b. \blacksquare$

Proposition 5.6 $x \prec y$ if and only if $\iota(x) \subseteq \iota(y)$.

Proof (\Rightarrow) Suppose $x \prec y$. Fix $z \in \iota(x)$. Then $z \prec x$, and since $x \prec y$, we have $z \prec y$ and thus $z \in \iota(y)$, whence $\iota(x) \subseteq \iota(y)$. (\Leftarrow) Suppose $\iota(x) \subseteq \iota(y)$. Clearly $x \in \iota(x)$, hence $x \in \iota(y)$, thus $x \prec y$.

Remark A conjunctive space (X, \circ) induces a category $C_{X,\circ}$. The objects of $C_{X,\circ}$ are the members of X. For a pair of (possibly identical) objects x and y, we construct a single arrow from x to y if $x \prec y$; otherwise there are no arrows from x to y. Then $C_{X,\circ}$ is a category. We then define a functor F from $C_{X,\circ}$ to the category **Set**. F takes each object $o \in C$ to $\iota(o)$ in **Set**, and takes each arrow $x \to y$ (i.e. $x \prec y$) to the arrow $\iota(x) \to \iota(y)$ (i.e. $\iota(x) \subseteq \iota(y)$).

Proposition 5.7 x is a point if and only if $\forall y \in X (x \circ y \leftrightarrow x \prec y)$

Proof (\Rightarrow) Suppose x is a point. Then by definition of point, we have immediately $\forall y \in X (x \circ y \to x \prec y)$. Now fix $y \in X$ such that $x \prec y$. By Corollary 4.3, we have $x \circ y$, thus $\forall y \in X (x \circ y \leftarrow x \prec y)$, whence $\forall y \in$ $X (x \circ y \leftrightarrow x \prec y)$.

(\Leftarrow) Suppose $\forall y \in X \, (x \circ y \leftrightarrow x \prec y)$. It is immediate that

 $\forall y \in X (x \circ y \to x \prec y)$, thus x is a point.

Proposition 5.8 If $y \in X$, then $\bigcap_{x \in \alpha(y)} \alpha(x) \subseteq \alpha(y)$.

Proof Suppose $y \in X$. Since $y \in \alpha(y)$, we have $\bigcap_{x \in \alpha(y)} \alpha(x) \subseteq \alpha(y)$.

Proposition 5.9 p is a point $\Leftrightarrow \alpha(p) = \bigcap_{x \in \alpha(p)} \alpha(x)$

Proof (\Rightarrow) Suppose p is a point. Fix $x \in \alpha(p)$. Then $p \circ x$, and since p is a point, we have $p \prec x$. This means $\alpha(p) \subseteq \alpha(x)$. Since x was an arbitrary member of $\alpha(p)$, we have $\alpha(p) \subseteq \bigcap_{x \in \alpha(p)} \alpha(x)$.

Next, by Proposition 5.8, we have $\bigcap_{x \in \alpha(p)} \alpha(x) \subseteq \alpha(p)$. We saw earlier that $\alpha(p) \subseteq \bigcap_{x \in \alpha(p)} \alpha(x)$, so we have $\alpha(p) = \bigcap_{x \in \alpha(p)} \alpha(x)$. (\Leftarrow) Suppose $\alpha(p) = \bigcap_{x \in \alpha(p)} \alpha(x)$. Fix y such that $p \circ y$. This means $y \in \alpha(p)$, so $\bigcap_{x \in \alpha(p)} \alpha(x) \subseteq \alpha(y)$. Since $\alpha(p) = \bigcap_{x \in \alpha(p)} \alpha(x)$, we get $\alpha(p) \subseteq \alpha(y)$, which means $p \prec y$. Thus p is a point.

Remark In Example 1, every $x \in X$ is a point.

In Example 2, x is a point if and only if it is a subset of any set which it meets.

In Example 3, for any point N, if $\bigcap_{n \in N} n \neq \emptyset$ is nonempty, it is a singleton set. Indeed, suppose $\{a, b\} \subseteq \bigcap_{n \in N} n \neq \emptyset$ for some $a \neq b$. Take $N_1 = \{\{a\}\}$. Since N is a point, we have

 $\forall N_1 (\forall n \in N \forall n_1 \in N_1 (n \cap n_1 \neq \emptyset) \to \forall n_1 \in N_1 \exists n \in N (n \subseteq n_1)), \text{ so in}$ particular $\forall n \in N \forall n_1 \in \{\{a\}\} (n \cap n_1 \neq \emptyset) \to \forall n_1 \in \{\{a\}\} \exists n \in N (n \subseteq n_1),$ or $\forall n \in N (n \cap \{a\} \neq \emptyset) \to \exists n \in N (n \subseteq \{a\}).$ Since $\forall n \in N (n \cap \{a\} \neq \emptyset),$ we get $\exists n \in N (n \subseteq \{a\}).$ Let n_0 be such an n. Then $n_0 \subseteq \{a\}.$ Since $\{a, b\} \subseteq \bigcap_{n \in N} \text{ and } \bigcap_{n \in N} n \subseteq n_0 \subseteq \{a\},$ it follows that $\{a, b\} \subseteq \{a\},$ which is absurd. Thus $\bigcap_{n \in N} n \in n_0 \subset \{a\}.$ And not contain more than one distinct member. Since $\bigcap_{n \in N} n \neq \emptyset, \bigcap_{n \in N} n \text{ is a singleton set.}$

6 Nests

In the following all chains are members of $\Phi(X, \circ)$.

Definition We define a relation \Box on chains satisfying $C_1 \Box C_2$ if and only if $\forall x_1 \in C_1 \forall x_2 \in C_2 (x_1 \circ x_2)$. This relation is symmetric and reflexive.

Remark $C_1 \square C_2$ if and only if

$$C_1 \subseteq \bigcap_{x \in C_2} \alpha(x), \tag{6.1}$$

or equivalently

$$C_2 \subseteq \bigcap_{x \in C_1} \alpha(x). \tag{6.2}$$

Definition We define a relation on chains satisfying $C_1 \sim C_2$ if and only $\forall C_3 (C_1 \Box C_3 \leftrightarrow C_2 \Box C_3)$.

Remark $C_1 \sim C_2$ if and only if

$$\bigcap_{x \in C_1} \alpha(x) = \bigcap_{x \in C_2} \alpha(x).$$
(6.3)

Proposition 6.1 \sim is an equivalence relation on the set of chains.

Proof (1) Let C_1 be a chain. Since

 $(\forall x_1 \in C_1 \forall x_3 \in C_3 (x_1 \circ x_3)) \iff (\forall x_2 \in C_1 \forall x_3 \in C_3 (x_2 \circ x_3))$ for every chain C_3 , we have $C_1 \sim C_1$.

(2) Let C_1 and C_2 be chains such that $C_1 \sim C_2$. Then

$$(\forall x_1 \in C_1 \forall x_3 \in C_3 (x_1 \circ x_3)) \leftrightarrow (\forall x_2 \in C_2 \forall x_3 \in C_3 (x_2 \circ x_3))$$
 for every

chain C_3 . This implies

 $(\forall x_2 \in C_2 \forall x_3 \in C_3 (x_2 \circ x_3)) \leftrightarrow (\forall x_1 \in C_1 \forall x_3 \in C_3 (x_1 \circ x_3))$ for every chain C_3 , which means $C_2 \sim C_1$.

(3) Suppose $C_1 \sim C_2$ and $C_2 \sim C_3$. Then $(\forall x_1 \in C_1 \forall x \in C (x_1 \circ x)) \leftrightarrow (\forall x_2 \in C_2 \forall x \in C (x_2 \circ x))$ and

 $(\forall x_2 \in C_2 \forall x \in C (x_2 \circ x)) \leftrightarrow (\forall x_3 \in C_3 \forall x \in C (x_3 \circ x))$ for every chain

C. Stringing these together we get

 $(\forall x_1 \in C_1 \forall x \in C (x_1 \circ x)) \leftrightarrow (\forall x_3 \in C_3 \forall x \in C (x_3 \circ x))$ for every chain C. This means $C_1 \sim C_3$.

Definition By <u>nest</u> we mean an equivalence class of chains.

Consider the collection of nests $Y = \{\overline{C}; C \in \Phi(X, \circ)\}$. For $\overline{C}_1, \overline{C}_2 \in Y$, define the relation $\overline{C}_1 \circ \overline{C}_2$ if and only if $C_1 \Box C_2$. Then (Y, \circ) is a conjunctive space.

7 Defining a Conjunctive Relation On Nests

Notation We write \overline{X} to denote the set of nests in the conjunctive space (X, \circ) induced by partial order \prec .

Notation By \overline{C} is meant the nest containing the chain C.

Definition We define a relation on nests satisfying $\overline{C}_1 \circ \overline{C}_2$ if $\forall x_1 \in C_1 \forall x_2 \in C_2 (x_1 \circ x_2)$.

Proposition 7.1 $\overline{\circ}$ is a conjunctive relation on \overline{X} , and therefore $(\overline{X}, \overline{\circ})$ is a conjunctive space.

Proof (1) Suppose \bar{C}_1 is a nest. Then since C_1 is a chain, $\forall x_1 \in C_1 \forall x_2 \in C_1 (x_1 \circ x_2)$, which means $\bar{C}_1 \bar{\circ} \bar{C}_1$. (2) Suppose \bar{C}_1 and \bar{C}_2 are nests such that $\bar{C}_1 \bar{\circ} \bar{C}_2$. Then $\forall x_1 \in C_1 \forall x_2 \in C_2 (x_1 \circ x_2)$, which means $\forall x_2 \in C_2 \forall x_1 \in C_1 (x_2 \circ x_1)$, hence $\bar{C}_2 \bar{\circ} \bar{C}_1$. (3) Suppose \bar{C}_1 and \bar{C}_2 are nests such that $\bar{C}_1 \bar{\circ} \bar{C}_3 \leftrightarrow \bar{C}_2 \bar{\circ} \bar{C}_3$ for every nest \bar{C}_3 . Then $\forall x_1 \in C_1 \forall x_3 \in C_3 (x_1 \circ x_3) \leftrightarrow \forall x_2 \in C_2 \forall x_3 \in C_3 (x_2 \circ x_3)$ for every nest \bar{C}_3 , hence $\bar{C}_1 = \bar{C}_2$.

Remark Under the induced partial order $\overline{\prec}$, $\overline{C}_1 \overline{\prec} \overline{C}_2$ if and only if

 $\forall C_3 \left((\forall x \in C_1 \forall y \in C_3 (x \circ y)) \to (\forall z \in C_2 \forall w \in C_3 (z \circ w)) \right). \text{ Alternatively,}$

Under the induced partial order $\bar{\prec}$, $\bar{C}_1 \bar{\prec} \bar{C}_2$ if and only if

$$\forall C_1 \in \bar{C}_1 \forall C_2 \in \bar{C}_2 \left(\bigcap_{x \in C_1} \alpha(x) \subseteq \bigcap_{x \in C_2} \alpha(x) \right).$$
(7.1)

Equivalently, $\bar{C}_1 \overrightarrow{\prec} \bar{C}_2$ if and only if

$$\bigcup_{C \in \bar{C}_1} \bigcap_{x \in C} \alpha(x) \subseteq \bigcap_{C \in \bar{C}_2} \bigcap_{x \in C} \alpha(x).$$
(7.2)

This suggests an alternative definition of a nest-point: $\bar{P} \in \bar{X}$ is a nest-point if and only if

$$\forall \bar{Q} \in \bar{X} \left(\bar{P} \bar{\circ} \bar{Q} \Rightarrow \bigcup_{C \in \bar{P}} \bigcap_{x \in C} \alpha(x) \subseteq \bigcap_{C \in \bar{Q}} \bigcap_{x \in C} \alpha(x) \right).$$
(7.3)

Remark The conjunctive space of nests $(\bar{X}, \bar{\circ})$ features a definition of a nest that is a point. From the definition, a nest \bar{C} is a point, i.e. a <u>nest-point</u> if and only if it satisfies $\forall \bar{C}_1, \bar{C}_2 \in \bar{X} (\bar{C} \bar{\circ} \bar{C}_1 \wedge \bar{C} \bar{\circ} \bar{C}_2 \rightarrow \bar{C}_1 \bar{\circ} \bar{C}_2)$. Equivalently, for every choice of chains $C_1, C_2 \in \Phi(X, \circ), \forall x_1 \in C \forall x_2 \in C_1 (x_1 \circ x_2) \wedge \forall y_1 \in$ $C \forall y_2 \in C_2 (y_1 \circ y_2)$ implies $\forall z_1 \in C_1 \forall z_2 \in C_2 (z_1 \circ z_2)$.

8 Rational Conjunctive Space

We now consider an interesting example, namely the rational conjunctive space referred to in Section 2. Recall the definition: Let $X = \{\{p \in \mathbb{Q}; \lambda(x) \leq p \leq \rho(x)\}; \lambda(x), \rho(x) \in \mathbb{Q}, \lambda(x) \leq \rho(x)\}$, and for any $x_1, x_2 \in X$, define the relation $x_1 \circ x_2$ if and only if $x_1 \cap x_2 \neq \emptyset$, i.e. $\max(\lambda(x_1), \lambda(x_2)) \leq \min(\rho(x_1), \rho(x_2))$. If this inequality holds, then in fact $x_1 \cap x_2 = \{p \in \mathbb{Q}; \max(\lambda(x_1), \lambda(x_2)) \leq p \leq \min(\rho(x_1), \rho(x_2))\}$ and $x_1 \cap x_2 \in X$. The partial order \prec satisfies $x_1 \prec x_2$ if and only if $x_1 \subseteq x_2$. A chain is any nested (in the sense of set inclusion) collection of members of X. Recall that by definition,

 $C_{1} \sim C_{2} \Leftrightarrow$ $\forall C_{3} \in \Phi(X, \circ) (\forall x_{1} \in C_{1} \forall x_{3} \in C_{3} (x_{1} \cap x_{3} \neq \emptyset) \leftrightarrow \forall x_{2} \in C_{2} \forall x_{3} \in C_{3} (x_{2} \cap x_{3} \neq \emptyset)).$ (8.1)

Definition For any chains C, $\sigma(C) = \left(\sup_{x \in C} \lambda(x), \inf_{x \in C} \rho(x)\right)$.

Proposition 8.1 For any chains C_1 and C_2 if $C_1 \sim C_2$, then $\sigma(C_1) = \sigma(C_2)$.

Proof Suppose $C_1 \sim C_2$. Let $L_1 = \sup_{x \in C_1} \lambda(x)$ and $R_1 = \inf_{x \in C_1} \rho(x)$, and let $L_2 = \sup_{y \in C_2} \lambda(y)$. Suppose for a contradiction that $L_1 \neq L_2$. Without loss of generality we can assume $L_1 < L_2$. Fix $\epsilon > 0$ such that $L_1 < L_2 - \epsilon$. We can find some $y \in C_2$ such that $L_2 - \epsilon < \lambda(y)$, thus $y \subset (L_2 - \epsilon, \infty)$. We can find $q_1, q_2 \in \mathbb{Q}$ such that $L_1 \leq q_1 \leq q_2 \leq L_2 - \epsilon$. Now take $C_3 \in \Phi(X, \circ)$ to be the

single-member chain $\{\{p \in \mathbb{Q}; q_1 \leq p \leq q_2\}\}$. Clearly $\{p \in \mathbb{Q}; q_1 \leq p \leq q_2\} \subseteq [q_1, q_2] \subseteq [L_1, L_2 - \epsilon]$, and since y does not meet $[L_1, L_2 - \epsilon]$, we have that $y \cap \{p \in \mathbb{Q}; q_1 \leq p \leq q_2\} = \emptyset$. However, $y \cap x \neq \emptyset$ for every $x \in C_1$, so it is not true that $\forall x_1 \in C_1 \forall x_3 \in C_3 \ (x_1 \cap x_3 \neq \emptyset) \leftrightarrow \forall x_2 \in C_2 \forall x_3 \in C_3 \ (x_2 \cap x_3 \neq \emptyset)$ for a contradiction. Thus $L_1 = L_2$, i.e. $\sup_{x \in C_1} \lambda(x) = \sup_{y \in C_2} \lambda(y)$. A similar argument gives $\inf_{x \in C_1} \rho(x) = \inf_{y \in C_2} \rho(y)$, thus $\sigma(C_1) = \sigma(C_2)$.

Proposition 8.2 $C_1 \sim C_2 \Rightarrow \forall x \in X (\forall y \in C_1 (x \subseteq y) \leftrightarrow \forall z \in C_2 (x \subseteq z)).$

Proof Suppose $C_1 \sim C_2$. Suppose $x \in X$ such that $\forall y \in C_1 (x \subseteq y)$. For a contradiction suppose $x \not\subseteq q$ for some $q \in C_2$. Fix nonempty p such that $p \subseteq x \setminus q$. Take $C_3 = \{p\}$. Then since $C_1 \sim C_2$, $\forall x_1 \in C_1 (x_1 \cap p \neq \emptyset) \leftrightarrow \forall x_2 \in$ $C_2 (x_2 \cap p \neq \emptyset)$. Clearly $\forall x_1 \in C_1 (x \subseteq x_1)$, and $p \subseteq x$, so $\forall x_1 \in C_1 (p \subseteq x_1)$, thus $\forall x_1 \in C_1 (x_1 \cap p \neq \emptyset)$, whence $\forall x_2 \in C_2 (x_2 \cap p \neq \emptyset)$. Recall $q \in C_2$, so we get $q \cap p \neq \emptyset$. But $q \cap p \subseteq q \cap (x \setminus q) = \emptyset$, so $q \cap p = \emptyset$ for a contradiction. Therefore $x \subseteq q$. Thus $\forall x \in X (\forall y \in C_1 (x \subseteq y)) \rightarrow \forall z \in C_2 (x \subseteq z))$. A similar argument gives $\forall x \in X (\forall z \in C_2 (x \subseteq z)) \rightarrow \forall x \in X (\forall y \in C_1 (x \subseteq y))$, hence $\forall x \in X (\forall y \in C_1 (x \subseteq y) \leftrightarrow \forall z \in C_2 (x \subseteq z))$.

Remark Each nest that is a point corresponds to a real number.

9 Contact

Email: kerry@kerrysoileau.com

10 Bibliography

1. T. L. Heath, Euclid: The Thirteen Books of The Elements, Dover, 1956.