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Abstract

We introduce the concept of a conjunctive space. Every reflexive,
symmetric relation induces a conjunctive space. This leads to a general
definition of “point” via an induced partial order.
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1 Introduction

Euclid [1] defined a point as “that which has no part.” One could equivalently
define a point x in a set as something with the property that, if it is a member
of sets y and z, then y and z meet each other. This inspires a more general
definition of a point: If we have defined the notion of “contact” between two
entities, we can immediately define the notion of “point” as follows: x is a
point if and only if whenever x contacts y and z, then y and z contact each
other. Clearly “contact” is a relation; in this section we denote it by the

binary operator o. We stipulate some intuitively reasonable properties of o.

Reflexivity Every entity contacts itself: x o x



Symmetry Contact is mutual: xoy < youx

Equivalence An entity is uniquely determined by its contacts: Vz (z o z <> yo z) =
rT=y

We call any such relation a conjunctive relation. We may now define a point:

x is a point < Yy, z ((xoy and x 0 z) — yo 2). (1.1)

In the next section will begin with a more precise definition of a conjunctive

relation, and develop its properties.

2 Conjunctive Relation

Let X be a nonempty set.

Definition We say that a relation o on X is conjunctive if and only if
(1) Vx € X (zox),
(2) V(L’l,l‘g eX ({L‘l O X9 <> T O :L‘l), and

(3) Vy € X (x1 0y > 29 0 y) implies 21 = z5.

Notation We call a nonempty set X together with a conjunctive relation o,

a conjunctive space (X, o).

Remark Any reflexive and symmetric relation induces a conjunctive space.
Indeed, let R be such a relation on a set Y. Define X to be the collection of

equivalence classes under the equivalence relation satisfying y; ~ yo if and



only if Vz € Y (y1 Rz <> y2Rz) . For any equivalence classes 4;,7> in X, we
define 7, o g if and only if y; Rys. It is easily seen that (X, o) is a conjunctive

space.

Definition For z € X, we define the function o : X — 2% satisfying

a(z)={ye X;zoy}. (2.1)

Note that « has the following properties:
1. Ve e X,z € a(x),
2. Vr,ye X,z €a(y)and y € a(x), and

3. « is injective.

Definition For a,b € X, we define the join and meet of a and b as follows.
We say that z = a Vb if and only if V2 € X (roz <> aozorboz}. We say

that x =a A bif and only if V2 € X (r oz <> aoz and bo z}.

Examples

(1) Let X be some nonempty set, and define the relation x; o x5 if and
only if z; = x,.

(2) Let X be a collection of nonempty subsets of some set Y. For any
21,29 € X, define the relation x; oxy if and only if z1 Ny # (). An interesting

instance of this example is obtained when we take



X ={{peQp <p<ptippe € Qpr < po}. We call this the

rational conjunctive space and will discuss it in greater detail below.

(3) Let X be the collection of collections of nested nonempty subsets of
some nonempty set Y. For Ny, Ny € X, define the relation N;o N, if and only
if Vny € N1Vng € Nay(ny Nng # ().

(4) Let L = L(A,Q,Z,1) be a propositional calculus with the usual
operators {—, A\, V,—, <>, 0,1} C Q. Let ¥ be the collection of sentences of
L. For finite S C X, define the operator = such that Z(5) = A x, with
ANz=1Let X ={0 CSCY;S is finite, Z(S5) # 0}. Define an (j(ijivalence
i:l@ation on members of X such that S; ~ Sy if and only if for all finite
T C X, Z(S1UT) # 0 <> Z(S.UT) # 0. Consider the collection of equivalence
classes C' = {5; S € X}. For 51,85 € X, define the relation S; 0 Sy if and
only if (5, U Sy) # 0.

(5) Let X be a nonempty collection of subsets of a set X, and let a : X —
2% be a function such that z € a(x) and = € a(y) +> y € a(z). Define a

relation R on subsets of X such that C7RC, if and only if

\V/C;; (Cl Q ﬂ CL(ZL‘3) ~ Cg Q ﬂ a(lbg)) .
x3€Cy z3€C3
(6) Consider the equivalence relation on groups satisfying G; ~ G if and
only if S is a simple subgroup of GG; +» S is a simple subgroup of GG5. On the
equivalence classes we then define the relation o satisfying Gy o Gy <> there

exists a simple group S (depending on G; and G2) that is a subgroup of both

G and (5. As defined, o is a conjunctive relation.



Conjunctive Relation

Figure 1: An example of a conjunctive relation.

3 Cartesian Products of Conjunctive Spaces

Given two conjunctive spaces (X, o) and (Y, e), we may define the product

space (X, 0) x (Y, e) as the conjunctive space (X x Y, x) satisfying
(1, 1) * (22, Y2) < @1 0 2 and y; @ yo. (3.1)

It is straightforward to verify the reflexive and symmetric properties of this
definition. To show the equivalence property, suppose for some (x1,4;) #
(22,y2) we have V (p, q) € (X, Y) ((z1,y1) * (p,q) <> (x2,92) * (P, q)) -
Case 1: x; # xo. This means
V(p,q) € (X,Y)(x10p and y; ® g <> x5 0p and y, @ ¢), which implies

Vp € X (ziopand y; ey, <> zo0p and ys @ y1). Since we always have



Figure 2: Connected Conjunctive Spaces On Five Points



y1 @Y1, this means Vp € X (z1 0 p <> x9 0o p and y, @ y;) . Since by assumption
X1 # x9, we can find p; such that x1 o p; is true and for which x5 o p; is false.
Since x10p1, and x10p; <> x20p; and Yo ey, we get xo0p for a contradiction.

Case 2: y; # ys. A contradiction is obtained with a similar argument.

Thus we have (z1,y1) = (22,7-). B

Proposition 3.1 The product space (X XY, x) = (X,0) x (Y,®) has an

induced partial order <, satisfying

(21, 11) <x (T2,Y2) & T1 <o T2 and Y1 <e Yo (3.2)

Proof (=) Suppose (z1,y1) <« (z2,y2) . Fix p, ¢ such that pox; and g e y;.
Then (p, q)*(x1,y1) . Since (1, y1) <« (22, y2), we have (p, ¢)*(x2,y2) , which
implies p o x9 and q e y9, whence x; <, x5 and y; <o ¥Yo.

(<) Suppose 1 <, x2 and y; <, Yo. Fix (p, ¢) such that (p,q) x (x1,11) .
Then poxy and g e y;. Since 1 <, 9 and y; <, Y2, We get po x9 and q @ ys,
whence (p, q) * (xa,y2) . This implies (z1,91) <« (72,72). B
Proposition 3.2 The points of the product space (X x Y, x) = (X, 0)x (Y, o)
are the members (p1,p2) € (X,Y) such that py is a point in (X,0), and ps
is a point in (Y, e).

Proof (=) Suppose (p1,p2) is a point in (X x Y, *). Fixz; € X andy; € Y
such that p; ox; and py @ y;. Then (py, p2) x (z1,y1) . Since (p1, p2) is a point,
we have (p1,p2) <. (z1,y1), which implies p; <, x; and py < x2. These

imply p; is a point in (X, 0), and ps is a point in (Y, e).
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(<) Suppose p; is a point in (X, 0), and py is a point in (Y,e). Fix
(x1,y1) such that (p1, p2) * (z1,y1) . Then p; o x1 and p, @ y;. Since p; and py
are points, we get p; <, 1 and ps <, y;1. This implies (p1, p2) <« (z1,¥1) , S0

(p1,p2) is a point in (X x Y, *). R

4 A Conjunctive Relation Induces a Partial

Order

Let (X, 0) be a conjunctive space.

Definition Define the order < satisfying x; < x5 if and only if

VyEX(xloy%xgoy).
Proposition 4.1 < is a partial order on X.

Proof (1) Let x € X. Since clearly Yy € X (roy — x oy), it follows that
x < x. (2) Suppose 1 < x9 and xy < 7. Fix y € X such that z; o y. Since
x1 < T3, we have x9 oy, thus Yy € X (21 oy <> 23 0 y), which by property
3 of o implies x; = 5. (3) Suppose x1 < x9 and 75 < z3. Fix y € X.
Then z1 oy — 220y and x5 0y — x3 0y, implying x; oy — x3 oy, thus

Vy € X (21 0y — z30y). But this just means x; < z3. B
Proposition 4.2 [If x1 < x9, then x1 o x3 implies x5 o x3.

Proof Suppose 21 < x9 and zj0x3. Since 21 < x9, we have Vy € X (x1 0y — a9 0y),

so in particular z; o x3 — x5 o x3, and thus we get x5 0 x3. l
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Corollary 4.3 If x; < x5, then x1 0 x5.

Proof Suppose x1 < x3. Then since z1 o x1, Proposition 4.2 immediately

implies x5 o £1. This in turn implies z; o x,. M

Notation We write ® (X,0) to denote the collection of chains of (X, o)

under the induced partial order <.
Corollary 4.4 If C € & (X,0), then Vay, x5 € C (x1 0 x9).

Proof Suppose C' is a chain and xq,29 € C. Then 1 < x5 or 9 < z1. In
either case, from Corollary 4.3 we get x; o x9, hence Vz1, x5 € C (x1 0 23), as

desired. W

Proposition 4.5 Define a conjunctive relation o on the set Y of nonempty
proper subsets of some nonempty set X, such that x1 o xy <> (x1 Nxg # 0).

Then x1 < x9 & 11 C x5.

Proof (=) Suppose 21 < x3. Then Yy € Y (z10y — z50vy), i.e. Vy €
Y (1 Ny # 0 — x9Ny #D). Since the set 25 € Y, we have

ryNas # D — xoNas # 0. If N as # B, this implication would give
xo N5 # (), which is clearly false, hence x1 N x5 = (). But this just means
1 € x9.

(<) Suppose 21 C z5. Fix any y € Y such that ;1 Ny # 0. Since
21 € x9, we have 21 Ny C 25 Ny and thus o Ny # 0, hence Vy €

Y (ryNy # 0 — x9Ny +#D). But this just means z; < xo. B



Remark In Example 1, x1 < 25 if and only if xy = z».

In Example 2, z1 < x5 if and only if z; C x,.

In Example 3, Ny < N, if and only if Vny € Nodng € Ny (ng Cng).
Indeed, suppose N; < N, and for a contradiction suppose dny € NoVng €
Ni (ny \ ny # 0). By Corollary 4.3, we get Ny o Ny. Fix ny € Ny such that
Vni € Ny(ni\na#0). Take N3 = {n; \ ng;n; € Np}. This is a chain
of nonempty members. Clearly Vn; € N1Vng € N3 (n; Nng # (), so since
N1 < Ny, we have Vny € NoVng € N3(npNng) # 0, i.e. Vny € NoVng €
{n1 \ n2;n1 € N1} (nyNng) # 0, which is a clear contradiction, thus Vny €
Ny3ng € Ny (ng Cng).

Conversely, suppose Vny € Nodng € Ny (ny C ng). Fix ng € No. Fix N3
such that N; o N3. Then Vny; € N1Vnz € N3 (n; Nng) # 0. Fix ng € N3. By
hypothesis, we get Iny € Ni (n; C ng). Fix ny € Ny such that ny C ny. Since
Vni € NiVns € N3 (ny Nng) # 0, we get ny Nng # (). Since ny C ny, we get
ny Nnz # 0. Thus Vny € NoVns € N3 (ng Nng) # (), which means Ny o Ns.
This gives VN3 (N o N3 — N3 o N3), which means N; < Ns.

In Example 4, if S; N Ann(Z(Sy)) # 0, then S; < Sy implies S; C
Sy. Here Ann(y) = {z € X;2# 0,y Az=0} for y € ¥. Indeed, suppose
Sy < Sy and S; N Ann (Z(S;)) # 0. For a contradiction, suppose S; ¢
Sy. Fix y € 81\ S Since S; < S5, VS3 € X (51 oSy — 52053), ie.
VSs € X( N z2#£0—= A x#O). Taking S3 = {y}, this means

2€8,US3 2€8,US3

A 2#0— A x#0. Since A z# 0andS;U{y} =5, we

x€S1U{y} x€S2U{y} T€SY
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get A« # 0. This means (/\ :c) ANy # 0,1e Z(S2) Ay # 0,
x€S2U{y} €S2
so we have y ¢ Ann(Z(S2)). y was an arbitrary member of S; \ Ss, so
(Sl \ SQ) N Ann (E( )) 0. S1 NSy C Sy and Sy N Ann (E (Sg))
so (S1NS2) NAnn (Z(S;)) = 0. This implies S; N Ann (2 (Ss)) = 0, for a
contradiction. Therefore S; C .55.
Next, note that if S; < S5, then Ann (Z(S;)) € Ann (Z(S))). Indeed,

suppose y € Ann (= (SQ)).SinceVS;;EX( N z2#0— A 937&0),

x€S1US3 x€S2US3
taking S5 = {y} implies A 2#0— A x#0.Since A x#0
zeS1U{y} z€S2U{y} z€S2U{y}
is false, sois A« # 0, and thus ( A ) ANy =0,s0y € Ann (Z(5})),
xeS1U{y} z€S1

whence Ann (2 (S3)) € Ann (2 (S5))).

Remark =z <y < a(z) C a(y).

5 Points

Definition A point is any element z € X satisfying any of the following

equivalent definitions:
I.Vye X(zoy— 1z <y)
2. Vye X(xoy—>VzeX(xoz—yoz))
3. Vy,z€ X (royANzoz—yoz)
Proposition 5.1 If xy is a point and x9 < x1, then x4 1s a point.

11



Partial Order

03]

Figure 3: The partial order induced by the example in Figure 1.

Proof Suppose z; is a point and x5 < x;. Fix y € X such that x5 o y. This
is always possible because x5 o 5. Then since x5 < x1 and x5 o y, we have
x10y. Since x is a point, we have 1 < y. Since x9 < 1, this implies x5 < y.

Hence Vy € X (x9 0y — x9 < y), which means x5 is a point. l
Proposition 5.2 If x1,25 € X are points and x| o xo, then x4 = x5.

Proof Suppose x1,22 € X are points and x; o z5. Then by definition of
point, we have x; < z5. Since x; o x5, we have x5 o 1. Again by definition
of point, we have o < x;. Since < is a partial order, we then have that

r1 =2 A

Remark If x € X is a point, then Vy,z € X (t <yAzx <z — yoz).

12



Proof Suppose x is a point and fix y, 2z € X such that + < y and z < 2. By

Corollary 4.3, we have x oy and x o z. Since x is a point, we get yo z. B

The converse is not true. For example, consider the simple conjunctive space

consisting of the three distinct elements x, y, and z, with conjunctive relation
o satisfying (exactly) zox, xoy,yox, yoy, yoz, zoy, and zo z. Then it
is easily checked that x and z are points, but y is not. Further, it is easily
checked that the induced partial order is described (exactly) by z < x, x < v,
y <y, 2=y, z =<z Thus we have Vp,q € X (y < pAy < q— poq) rather
trivially, since the only critical choices of p and ¢ are p = ¢ = y, yielding the

implication y < y Ay < y — y oy which is clearly satisfied.

Definition For x € X, we define the sets ¢ (z) = {y € X;y < z} and k () =
{y € X;2 < y}. Note that ¢ (z) Nk (z) = {z}.

Remark z is a point < a(z) C k(z).

Proposition 5.3 ¢(a) Nt (b) #0 = aob

Proof Suppose t € ¢ (a)Ne(b). Since t € ¢ (a), we have t < a, which implies
Vy € X (toy — aoy). In particular this means tob — aob. Since t € ¢ (b),

and thus ¢ < b, by Corollary 4.3 we have t o b. Thus it follows that aob. B
Proposition 5.4 If p is a point, then ¢ (p) = {p}.

Proof Suppose p is a point and b € ¢ (p). Then b < p. By Proposition 5.1, b

is a point. Since b < p, then b o p, so by Proposition 5.2 we have that b = p.

Thus ¢ (p) C {p}. Clearly p € ¢(p), so {p} C ¢(p), whence ¢ (p) = {p}. B

13



The converse is not true. In the example conjunctive space given above, the

element y satisfies ¢ (y) = {y}, yet y is not a point.
Proposition 5.5 ¢(a) =¢(b) <> a=10

Proof Suppose ¢ (a) = ¢ (b). Then

{lye X;Vze X (yoz—aoz)} ={ye X;Vz€ X (yoz—boz)}. Since
clearly a € {y € X;Vz € X (yoz — aoz)}, we have

a € {ye X;Vze X (yoz—boz)}, and thus Vz € X (aoz—boz).
Since clearly b € {y € X;Vz € X (yoz — boz)}, we have

be{yeX;Vze X (yoz—aoz2)}, and thus Vz € X (boz — aoz),

whence Vz € X (a0 z <> boz), and thusa=0b. B
Proposition 5.6 = <y if and only if 1 (x) C ¢ (y).

Proof (=) Suppose z < y. Fix z € «(z). Then z < z, and since x < y, we
have z < y and thus z € «(y), whence ¢ (z) C ¢ (y) . (<) Suppose ¢ (z) C ¢ (y) .

Clearly x € ¢ (x), hence z € ¢ (y), thus z < y. B

Remark A conjunctive space (X, o) induces a category C'x .. The objects of
Cx o are the members of X. For a pair of (possibly identical) objects z and
y, we construct a single arrow from z to y if x < y; otherwise there are no
arrows from z to y. Then Cx , is a category. We then define a functor F' from
Cx o to the category Set. F' takes each object o € C to (o) in Set, and takes

each arrow x — y (i.e. < y) to the arrow v(z) — (y) (i.e. t(x) C (y)).

Proposition 5.7 x is a point if and only if Vy € X (xoy <> x < y)
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Proof (=) Suppose x is a point. Then by definition of point, we have
immediately Vy € X (xoy — x < y). Now fix y € X such that < y. By
Corollary 4.3, we have x oy, thus Vy € X (xoy <+ x <y), whence Vy €
X(xoysrz<y).

(<) Suppose Vy € X (xoy <> x < y). It is immediate that

Yy € X (roy — x <y), thus = is a point. H

Proposition 5.8 Ify € X, then (] a(x)Cal(y).

z€a(y)

Proof Suppose y € X. Since y € a(y), we have (] a(z) Ca(y). R
zea(y)

Proposition 5.9 p is a point < a(p) = (] a(x)

zca(p)
Proof (=) Suppose p is a point. Fix z € a(p). Then p o x, and since p is
a point, we have p < x. This means a(p) C «a(z). Since x was an arbitrary

member of a(p), we have a(p) C ) «(z).
zea(p)
Next, by Proposition 5.8, we have [] «(z) C «a(p). We saw earlier
zE€a(p)
that a(p) € () «(z), so we have a(p) = ] a(x).
z€a(p) z€a(p)
(<) Suppose a (p) = () «(z). Fix y such that p o y. This means y €
zca(p)
a(p), 0 (1 a(@) C aly). Since a(p) = ) a(z), we get alp) C aly)
z€a(p) zea(p)

which means p < y. Thus p is a point. B

Remark In Example 1, every z € X is a point.
In Example 2, x is a point if and only if it is a subset of any set which it

meets.
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In Example 3, for any point N, if () n # () is nonempty, it is a singleton
neN

set. Indeed, suppose {a,b} C [\ n # 0 for some a # b. Take N; = {{a}}.
Since N is a point, we have "

VN1 (Vn € NVn; € Ny (nNny #0) —Vny € Ny3n € N(nCny)), so in
particular Vn € NVn, € {{a}} (nNny #0) = Vny € {{a}}TIn € N (n Cny),
orVne N(nn{a} #0) — Ine€ N (nC {a}). Since Vn € N (nn{a} #0),
we get In € N (n C {a}). Let ng be such an n. Then ny C {a}. Since
{a,b} € () and [) n C ng C {a}, it follows that {a,b} C {a}, which is

neN nenN

absurd. Thus () n cannot contain more than one distinct member. Since
neN

N n#0, () nis a singleton set.
neN neN

6 Nests

In the following all chains are members of ® (X o).

Definition We define a relation [J on chains satisfying C10C5 if and only

if Vo, € C1Vxy € Cy (1 0 z5) . This relation is symmetric and reflexive.

Remark C,0C, if and only if
Ci1C ) @), (6.1)

or equivalently



Definition We define a relation on chains satisfying C; ~ C if and only

v03 (01DC3 e CQDCg) .

Remark C ~ Cj if and only if

zeCq z€Cy

Proposition 6.1 ~ is an equivalence relation on the set of chains.

Proof (1) Let C} be a chain. Since

(Vxq € C1Vx3 € C3 (11 023)) <> (Vag € C1Va3 € C3 (29 0 23)) for every
chain C3, we have C; ~ (4.

(2) Let C and Cy be chains such that C; ~ Cy. Then

(Vxq € C1Va3 € C3 (11 023)) <> (Vag € CoVas € C3 (29 0 23)) for every
chain (3. This implies

(Vg € CoVa3 € C3 (rg023)) » (Vo € C1Vas € C3(x1 0 23)) for every
chain C3, which means Cy ~ (.

(3) Suppose Cy ~ Cy and Cy ~ C5. Then (Vz; € C1Vor € C(x1012)) <>
(Vg € CoVx € C (230 x)) and

(Vzg € CoVx € C'(z901)) <> (Vg € C3Va € C'(x30x)) for every chain
C. Stringing these together we get

(Vo € C\Vr € C(z102)) > (Vaz € CsVa € C (z30x)) for every chain
C'. This means (7 ~ C5.1

Definition By nest we mean an equivalence class of chains.
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Consider the collection of nests Y = {C;C € ®(X,0)}. For C1,Cy €Y,
define the relation C,6C5 if and only if C;JC,. Then (Y,0) is a conjunctive

space.

7 Defining a Conjunctive Relation On Nests

Notation We write X to denote the set of nests in the conjunctive space

(X, o) induced by partial order <.
Notation By C is meant the nest containing the chain C.

Definition We define a relation on nests satisfying C16C, if Vo, € C1Vz, €
02 (ZEl @) 1’2).

Proposition 7.1 6 is a conjunctive relation on X, and therefore (X’, 6) 18

a conjunctive space.

Proof (1) Suppose C) is a nest. Then since C] is a chain, Vz; € O1Vr, €
C} (21 o 5), which means C15C,. (2) Suppose C; and Cy are nests such that
C,6Cy. Then Vz; € O\Vxy € Cs (r1 0 x9), which means Vz, € CyVr; €
C) (z 011), hence C55C,. (3) Suppose C; and C, are nests such that
C16C5 + Cy0C5 for every nest Cs. Then Vz; € C1Vas € Cs(x 0x3) <>

Vo € CyVas € C3 (x4 0 x3) for every nest Cs, hence C) = Cy. 1

Remark Under the induced partial order <, C;=<C, if and only if
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VC5 ((Vx € C1Vy € Cy(zoy)) — (Vz € CyVw € O3 (z ow))). Alternatively,

Under the induced partial order <, C;<C5 if and only if

V(O € (leCg € C’Q ( ﬂ OC(JI) - m Oé(.T)) . (71)

zeCy xeCy

Equivalently, C;<C} if and only if

U ﬂ a(r) C m ﬂ a(z). (7.2)

cely zelC ceCy zeC

This suggests an alternative definition of a nest-point: P € X is a nest-point

if and only if

VQeX | PoQ= | (e S () [)eal) |- (7.3)

cep zeC CceQ zeC
Remark The conjunctive space of nests (X' , 6) features a definition of a nest
that is a point. From the definition, a nest C is a point, i.e. a nest-point if and
only if it satisfies VC;,Cy € X (6’601 A CoCy — 6’16(72) . Equivalently, for
every choice of chains Cy,Cy € ® (X, 0), Vo, € CVzy € C) (x1 029) AVy; €

CVy, € Cy (y1 0 yo) implies Vz; € C1Vzy € Cy (21 0 23) .
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8 Rational Conjunctive Space

We now consider an interesting example, namely the rational conjunctive
space referred to in Section 2. Recall the definition: Let X = {{p € Q; A\(z) <
p < p(x)}; A(x), p(x) € Q,A(z) < p(x)}, and for any x1,20 € X, define
the relation z; o xo if and only if zy Nxy # 0, i.e. max (A (z1), )\ (22)) <
min (p (x1), p(x2)). If this inequality holds, then in fact 21 Nazy = {p €
Q;max (A (z1),A(z2)) < p < min(p(z1),p(x2))} and x; Nzy € X. The
partial order < satisfies 7 < x5 if and only if 1 C z5. A chain is any nested
(in the sense of set inclusion) collection of members of X. Recall that by

definition,

Cl ~ CQ ~
VO3 € @ (X, O) (Vl‘l € C\Vrs € Cy (ZEl MNxs ?é @) — Vg € OCyVxs € Cy (ZL‘Q MNxg 7é @)) .
(8.1)

Definition For any chains C, o(C) = (sup A(z), inép(a:)) .
Te

zeC

Proposition 8.1 For any chains Cy and Cy if Cy ~ Cy, then o(Cy) = o(Cy).

Proof Suppose Cy ~ Cs. Let Ly = sup A(z) and Ry = incf p(x), and let
zeCy zely

Ly = sup A(y). Suppose for a contradiction that Ly # Lo. Without loss of
yeCo

generality we can assume L; < Ls. Fix € > 0 such that Ly < Ly —e. We can

find some y € Cy such that Ly —e < A (y), thus y C (Ls — €, 00) . We can find

q1,q2 € Q such that Ly < ¢1 < g2 < Ly —e. Now take C3 € ® (X, 0) to be the
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single-member chain {{p € Q;¢1 < p < ¢}}. Clearly {p € Q; 1 < p < ¢} C
[q1,q2] € [L1, Ly — €], and since y does not meet [Lq, Ly — €], we have that
yN{p € Q;q1 < p < g2} = 0. However, yNa # () for every z € C1, so it is not
true that Va; € C\Vas € C3 (z1 Nas # 0) <> Vag € CoVas € Cz (12 N a3 # D)
for a contradiction. Thus L; = Lo, i.e. sup A(x) = sup A(y). A similar

zeCy yeCs

argument gives inf p(x) = inf p(y), thus o(Cy) = o(Cy). A
zeCy yeCs

Proposition 8.2 C; ~Cy =Vre X (Vye Cy(x Cy) <> Vz e Cy(x C 2)).

Proof Suppose C) ~ Cy. Suppose x € X such that Yy € C; (z C y). For
a contradiction suppose x € ¢ for some ¢ € Cs. Fix nonempty p such that
p C 2\q. Take C3 = {p}. Then since C; ~ Co, Vo € Cy (x1 Np # 0) <> Vaop €
Cy(zaNp#0). Clearly Vo, € Cy (x C21),and p C x,s0Va; € Cy (p C 21),
thus Vo, € C) (z; N p # 0), whence Vo € Cy (xo Np # 0) . Recall g € Cy, so
we get gNp # 0. But gqNp CgN(z\ q) =0, so ¢gNp =0 for a contradiction.
Therefore + C ¢. Thus Vo € X (VyeCi (e Cy) >VzeCy(zC2z)). A
similar argument gives Vo € X (Vz € Cy (x C 2)) = Ve € X (Vy € C1 (z Cy)),
hence Ve e X (Vy € Ci (z Cy) <> VzeCy(zCz)). B

Remark Each nest that is a point corresponds to a real number.

9 Contact

Email: kerry@kerrysoileau.com
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