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Abstract

We introduce the concept of a conjunctive space. Every reflexive,
symmetric relation induces a conjunctive space. This leads to a general
definition of “point” via an induced partial order.
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1 Introduction

Euclid [1] defined a point as “that which has no part.” One could equivalently

define a point x in a set as something with the property that, if it is a member

of sets y and z, then y and z meet each other. This inspires a more general

definition of a point: If we have defined the notion of “contact” between two

entities, we can immediately define the notion of “point” as follows: x is a

point if and only if whenever x contacts y and z, then y and z contact each

other. Clearly “contact” is a relation; in this section we denote it by the

binary operator ◦. We stipulate some intuitively reasonable properties of ◦.

Reflexivity Every entity contacts itself: x ◦ x
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Symmetry Contact is mutual: x ◦ y ⇔ y ◦ x

Equivalence An entity is uniquely determined by its contacts: ∀z (x ◦ z ↔ y ◦ z)⇒

x = y

We call any such relation a conjunctive relation. We may now define a point:

x is a point⇔ ∀y, z ((x ◦ y and x ◦ z)→ y ◦ z) . (1.1)

In the next section will begin with a more precise definition of a conjunctive

relation, and develop its properties.

2 Conjunctive Relation

Let X be a nonempty set.

Definition We say that a relation ◦ on X is conjunctive if and only if

(1) ∀x ∈ X (x ◦ x),

(2) ∀x1, x2 ∈ X (x1 ◦ x2 ↔ x2 ◦ x1), and

(3) ∀y ∈ X (x1 ◦ y ↔ x2 ◦ y) implies x1 = x2.

Notation We call a nonempty set X together with a conjunctive relation ◦,

a conjunctive space (X, ◦) .

Remark Any reflexive and symmetric relation induces a conjunctive space.

Indeed, let R be such a relation on a set Y. Define X to be the collection of

equivalence classes under the equivalence relation satisfying y1 ∼ y2 if and
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only if ∀z ∈ Y (y1Rz ↔ y2Rz) . For any equivalence classes ȳ1, ȳ2 in X, we

define ȳ1 ◦ ȳ2 if and only if y1Ry2. It is easily seen that (X, ◦) is a conjunctive

space.

Definition For x ∈ X, we define the function α : X → 2X satisfying

α (x) = {y ∈ X;x ◦ y} . (2.1)

Note that α has the following properties:

1. ∀x ∈ X, x ∈ α (x) ,

2. ∀x, y ∈ X, x ∈ α (y) and y ∈ α (x) , and

3. α is injective.

Definition For a, b ∈ X, we define the join and meet of a and b as follows.

We say that x = a ∨ b if and only if ∀z ∈ X (x ◦ z ↔ a ◦ z or b ◦ z} . We say

that x = a ∧ b if and only if ∀z ∈ X (x ◦ z ↔ a ◦ z and b ◦ z} .

Examples

(1) Let X be some nonempty set, and define the relation x1 ◦ x2 if and

only if x1 = x2.

(2) Let X be a collection of nonempty subsets of some set Y. For any

x1, x2 ∈ X, define the relation x1◦x2 if and only if x1∩x2 6= ∅. An interesting

instance of this example is obtained when we take
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X = {{p ∈ Q; p1 6 p 6 p2}; p1, p2 ∈ Q, p1 6 p2}. We call this the

rational conjunctive space and will discuss it in greater detail below.

(3) Let X be the collection of collections of nested nonempty subsets of

some nonempty set Y. For N1, N2 ∈ X, define the relation N1 ◦N2 if and only

if ∀n1 ∈ N1∀n2 ∈ N2(n1 ∩ n2 6= ∅).

(4) Let L = L (A,Ω, Z, I) be a propositional calculus with the usual

operators {¬,∧,∨,→,↔, 0, 1} ⊆ Ω. Let Σ be the collection of sentences of

L. For finite S ⊆ Σ, define the operator Ξ such that Ξ(S) ≡
∧
x∈S

x, with∧
x∈∅

x ≡ 1. Let X = {∅ ⊂ S ⊆ Σ;S is finite,Ξ(S) 6= 0}. Define an equivalence

relation on members of X such that S1 ∼ S2 if and only if for all finite

T ⊆ Σ,Ξ(S1∪T ) 6= 0↔ Ξ(S2∪T ) 6= 0. Consider the collection of equivalence

classes C = {S̄;S ∈ X}. For S1, S2 ∈ X, define the relation S̄1 ◦ S̄2 if and

only if Ξ(S1 ∪ S2) 6= 0.

(5) Let Σ be a nonempty collection of subsets of a set X, and let a : X →

2X be a function such that x ∈ a(x) and x ∈ a(y) ↔ y ∈ a(x). Define a

relation R on subsets of X such that C1RC2 if and only if

∀C3

(
C1 ⊆

⋂
x3∈C3

a (x3)⇔ C2 ⊆
⋂

x3∈C3

a (x3)

)
.

(6) Consider the equivalence relation on groups satisfying G1 ∼ G2 if and

only if S is a simple subgroup of G1 ↔ S is a simple subgroup of G2. On the

equivalence classes we then define the relation ◦ satisfying Ḡ1 ◦ Ḡ2 ↔ there

exists a simple group S (depending on G1 and G2) that is a subgroup of both

G1 and G2. As defined, ◦ is a conjunctive relation.
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Figure 1: An example of a conjunctive relation.

3 Cartesian Products of Conjunctive Spaces

Given two conjunctive spaces (X, ◦) and (Y, •) , we may define the product

space (X, ◦)× (Y, •) as the conjunctive space (X × Y, ?) satisfying

(x1, y1) ? (x2, y2)⇔ x1 ◦ x2 and y1 • y2. (3.1)

It is straightforward to verify the reflexive and symmetric properties of this

definition. To show the equivalence property, suppose for some (x1, y1) 6=

(x2, y2) we have ∀ (p, q) ∈ (X, Y ) ((x1, y1) ? (p, q)↔ (x2, y2) ? (p, q)) .

Case 1: x1 6= x2. This means

∀ (p, q) ∈ (X, Y ) (x1 ◦ p and y1 • q ↔ x2 ◦ p and y2 • q) , which implies

∀p ∈ X (x1 ◦ p and y1 • y1 ↔ x2 ◦ p and y2 • y1) . Since we always have
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Figure 2: Connected Conjunctive Spaces On Five Points
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y1•y1, this means ∀p ∈ X (x1 ◦ p↔ x2 ◦ p and y2 • y1) . Since by assumption

x1 6= x2, we can find p1 such that x1 ◦ p1 is true and for which x2 ◦ p1 is false.

Since x1◦p1, and x1◦p1 ↔ x2◦p1 and y2•y1, we get x2◦p1 for a contradiction.

Case 2: y1 6= y2. A contradiction is obtained with a similar argument.

Thus we have (x1, y1) = (x2, y2) . �

Proposition 3.1 The product space (X × Y, ?) ≡ (X, ◦) × (Y, •) has an

induced partial order ≺? satisfying

(x1, y1) ≺? (x2, y2)⇔ x1 ≺◦ x2 and y1 ≺• y2 (3.2)

Proof (⇒) Suppose (x1, y1) ≺? (x2, y2) . Fix p, q such that p ◦ x1 and q • y1.

Then (p, q)?(x1, y1) . Since (x1, y1) ≺? (x2, y2) , we have (p, q)?(x2, y2) , which

implies p ◦ x2 and q • y2, whence x1 ≺◦ x2 and y1 ≺• y2.

(⇐) Suppose x1 ≺◦ x2 and y1 ≺• y2. Fix (p, q) such that (p, q) ? (x1, y1) .

Then p ◦ x1 and q • y1. Since x1 ≺◦ x2 and y1 ≺• y2, we get p ◦ x2 and q • y2,

whence (p, q) ? (x2, y2) . This implies (x1, y1) ≺? (x2, y2) . �

Proposition 3.2 The points of the product space (X × Y, ?) ≡ (X, ◦)×(Y, •)

are the members (p1, p2) ∈ (X, Y ) such that p1 is a point in (X, ◦) , and p2

is a point in (Y, •) .

Proof (⇒) Suppose (p1, p2) is a point in (X × Y, ?) . Fix x1 ∈ X and y1 ∈ Y

such that p1 ◦ x1 and p2 • y1. Then (p1, p2) ? (x1, y1) . Since (p1, p2) is a point,

we have (p1, p2) ≺? (x1, y1) , which implies p1 ≺◦ x1 and p2 ≺• x2. These

imply p1 is a point in (X, ◦) , and p2 is a point in (Y, •) .
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(⇐) Suppose p1 is a point in (X, ◦) , and p2 is a point in (Y, •) . Fix

(x1, y1) such that (p1, p2) ? (x1, y1) . Then p1 ◦ x1 and p2 • y1. Since p1 and p2

are points, we get p1 ≺◦ x1 and p2 ≺• y1. This implies (p1, p2) ≺? (x1, y1) , so

(p1, p2) is a point in (X × Y, ?) . �

4 A Conjunctive Relation Induces a Partial

Order

Let (X, ◦) be a conjunctive space.

Definition Define the order ≺ satisfying x1 ≺ x2 if and only if

∀y ∈ X (x1 ◦ y → x2 ◦ y).

Proposition 4.1 ≺ is a partial order on X.

Proof (1) Let x ∈ X. Since clearly ∀y ∈ X (x ◦ y → x ◦ y), it follows that

x ≺ x. (2) Suppose x1 ≺ x2 and x2 ≺ x1. Fix y ∈ X such that x1 ◦ y. Since

x1 ≺ x2, we have x2 ◦ y, thus ∀y ∈ X (x1 ◦ y ↔ x2 ◦ y), which by property

3 of ◦ implies x1 = x2. (3) Suppose x1 ≺ x2 and x2 ≺ x3. Fix y ∈ X.

Then x1 ◦ y → x2 ◦ y and x2 ◦ y → x3 ◦ y, implying x1 ◦ y → x3 ◦ y, thus

∀y ∈ X (x1 ◦ y → x3 ◦ y). But this just means x1 ≺ x3. �

Proposition 4.2 If x1 ≺ x2, then x1 ◦ x3 implies x2 ◦ x3.

Proof Suppose x1 ≺ x2 and x1◦x3. Since x1 ≺ x2, we have ∀y ∈ X (x1 ◦ y → x2 ◦ y),

so in particular x1 ◦ x3 → x2 ◦ x3, and thus we get x2 ◦ x3. �
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Corollary 4.3 If x1 ≺ x2, then x1 ◦ x2.

Proof Suppose x1 ≺ x2. Then since x1 ◦ x1, Proposition 4.2 immediately

implies x2 ◦ x1. This in turn implies x1 ◦ x2. �

Notation We write Φ (X, ◦) to denote the collection of chains of (X, ◦)

under the induced partial order ≺.

Corollary 4.4 If C ∈ Φ (X, ◦), then ∀x1, x2 ∈ C (x1 ◦ x2).

Proof Suppose C is a chain and x1, x2 ∈ C. Then x1 ≺ x2 or x2 ≺ x1. In

either case, from Corollary 4.3 we get x1 ◦ x2, hence ∀x1, x2 ∈ C (x1 ◦ x2), as

desired. �

Proposition 4.5 Define a conjunctive relation ◦ on the set Y of nonempty

proper subsets of some nonempty set X, such that x1 ◦ x2 ↔ (x1 ∩ x2 6= ∅).

Then x1 ≺ x2 ⇔ x1 ⊆ x2.

Proof (⇒) Suppose x1 ≺ x2. Then ∀y ∈ Y (x1 ◦ y → x2 ◦ y), i.e. ∀y ∈

Y (x1 ∩ y 6= ∅ → x2 ∩ y 6= ∅). Since the set xc2 ∈ Y , we have

x1 ∩ xc2 6= ∅ → x2 ∩ xc2 6= ∅. If x1 ∩ xc2 6= ∅, this implication would give

x2 ∩ xc2 6= ∅, which is clearly false, hence x1 ∩ xc2 = ∅. But this just means

x1 ⊆ x2.

(⇐) Suppose x1 ⊆ x2. Fix any y ∈ Y such that x1 ∩ y 6= ∅. Since

x1 ⊆ x2, we have x1 ∩ y ⊆ x2 ∩ y and thus x2 ∩ y 6= ∅, hence ∀y ∈

Y (x1 ∩ y 6= ∅ → x2 ∩ y 6= ∅). But this just means x1 ≺ x2. �
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Remark In Example 1, x1 ≺ x2 if and only if x1 = x2.

In Example 2, x1 ≺ x2 if and only if x1 ⊆ x2.

In Example 3, N1 ≺ N2 if and only if ∀n2 ∈ N2∃n1 ∈ N1 (n1 ⊆ n2) .

Indeed, suppose N1 ≺ N2, and for a contradiction suppose ∃n2 ∈ N2∀n1 ∈

N1 (n1 \ n2 6= ∅) . By Corollary 4.3, we get N1 ◦ N2. Fix n2 ∈ N2 such that

∀n1 ∈ N1 (n1 \ n2 6= ∅) . Take N3 = {n1 \ n2;n1 ∈ N1}. This is a chain

of nonempty members. Clearly ∀n1 ∈ N1∀n3 ∈ N3 (n1 ∩ n3 6= ∅) , so since

N1 ≺ N2, we have ∀n2 ∈ N2∀n3 ∈ N3 (n2 ∩ n3) 6= ∅, i.e. ∀n2 ∈ N2∀n3 ∈

{n1 \ n2;n1 ∈ N1} (n2 ∩ n3) 6= ∅, which is a clear contradiction, thus ∀n2 ∈

N2∃n1 ∈ N1 (n1 ⊆ n2) .

Conversely, suppose ∀n2 ∈ N2∃n1 ∈ N1 (n1 ⊆ n2) . Fix n2 ∈ N2. Fix N3

such that N1 ◦ N3. Then ∀n1 ∈ N1∀n3 ∈ N3 (n1 ∩ n3) 6= ∅. Fix n3 ∈ N3. By

hypothesis, we get ∃n1 ∈ N1 (n1 ⊆ n2) . Fix n1 ∈ N1 such that n1 ⊆ n2. Since

∀n1 ∈ N1∀n3 ∈ N3 (n1 ∩ n3) 6= ∅, we get n1 ∩ n3 6= ∅. Since n1 ⊆ n2, we get

n2 ∩ n3 6= ∅. Thus ∀n2 ∈ N2∀n3 ∈ N3 (n2 ∩ n3) 6= ∅, which means N2 ◦ N3.

This gives ∀N3 (N1 ◦N3 → N2 ◦N3) , which means N1 ≺ N2.

In Example 4, if S1 ∩ Ann (Ξ (S2)) 6= ∅, then S̄1 ≺ S̄2 implies S1 ⊆

S2. Here Ann (y) ≡ {z ∈ Σ; z 6= 0, y ∧ z = 0} for y ∈ Σ. Indeed, suppose

S̄1 ≺ S̄2 and S1 ∩ Ann (Ξ (S2)) 6= ∅. For a contradiction, suppose S1 *

S2. Fix y ∈ S1 \ S2. Since S̄1 ≺ S̄2, ∀S3 ∈ X
(
S̄1 ◦ S̄3 → S̄2 ◦ S̄3

)
, i.e.

∀S3 ∈ X

( ∧
x∈S1∪S3

x 6= 0→
∧

x∈S2∪S3

x 6= 0

)
. Taking S3 = {y}, this means∧

x∈S1∪{y}
x 6= 0 →

∧
x∈S2∪{y}

x 6= 0. Since
∧
x∈S1

x 6= 0 and S1 ∪ {y} = S1, we
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get
∧

x∈S2∪{y}
x 6= 0. This means

( ∧
x∈S2

x

)
∧ y 6= 0, i.e. Ξ (S2) ∧ y 6= 0,

so we have y /∈ Ann (Ξ (S2)) . y was an arbitrary member of S1 \ S2, so

(S1 \ S2) ∩ Ann (Ξ (S2)) = ∅. S1 ∩ S2 ⊂ S2 and S2 ∩ Ann (Ξ (S2)) = ∅,

so (S1 ∩ S2) ∩ Ann (Ξ (S2)) = ∅. This implies S1 ∩ Ann (Ξ (S2)) = ∅, for a

contradiction. Therefore S1 ⊆ S2.

Next, note that if S̄1 ≺ S̄2, then Ann (Ξ (S2)) ⊆ Ann (Ξ (S1)) . Indeed,

suppose y ∈ Ann (Ξ (S2)) . Since ∀S3 ∈ X
( ∧
x∈S1∪S3

x 6= 0→
∧

x∈S2∪S3

x 6= 0

)
,

taking S3 = {y} implies
∧

x∈S1∪{y}
x 6= 0→

∧
x∈S2∪{y}

x 6= 0. Since
∧

x∈S2∪{y}
x 6= 0

is false, so is
∧

x∈S1∪{y}
x 6= 0, and thus

( ∧
x∈S1

x

)
∧ y = 0, so y ∈ Ann (Ξ (S1)) ,

whence Ann (Ξ (S2)) ⊆ Ann (Ξ (S1)) .

Remark x ≺ y ⇔ α(x) ⊆ α(y).

5 Points

Definition A point is any element x ∈ X satisfying any of the following

equivalent definitions:

1. ∀y ∈ X (x ◦ y → x ≺ y)

2. ∀y ∈ X (x ◦ y → ∀z ∈ X (x ◦ z → y ◦ z))

3. ∀y, z ∈ X (x ◦ y ∧ x ◦ z → y ◦ z)

Proposition 5.1 If x1 is a point and x2 ≺ x1, then x2 is a point.
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Figure 3: The partial order induced by the example in Figure 1.

Proof Suppose x1 is a point and x2 ≺ x1. Fix y ∈ X such that x2 ◦ y. This

is always possible because x2 ◦ x2. Then since x2 ≺ x1 and x2 ◦ y, we have

x1◦y. Since x1 is a point, we have x1 ≺ y. Since x2 ≺ x1, this implies x2 ≺ y.

Hence ∀y ∈ X (x2 ◦ y → x2 ≺ y), which means x2 is a point. �

Proposition 5.2 If x1, x2 ∈ X are points and x1 ◦ x2, then x1 = x2.

Proof Suppose x1, x2 ∈ X are points and x1 ◦ x2. Then by definition of

point, we have x1 ≺ x2. Since x1 ◦ x2, we have x2 ◦ x1. Again by definition

of point, we have x2 ≺ x1. Since ≺ is a partial order, we then have that

x1 = x2. �

Remark If x ∈ X is a point, then ∀y, z ∈ X (x ≺ y ∧ x ≺ z → y ◦ z).
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Proof Suppose x is a point and fix y, z ∈ X such that x ≺ y and x ≺ z. By

Corollary 4.3, we have x ◦ y and x ◦ z. Since x is a point, we get y ◦ z. �

The converse is not true. For example, consider the simple conjunctive space

consisting of the three distinct elements x, y, and z, with conjunctive relation

◦ satisfying (exactly) x ◦ x, x ◦ y, y ◦ x, y ◦ y, y ◦ z, z ◦ y, and z ◦ z. Then it

is easily checked that x and z are points, but y is not. Further, it is easily

checked that the induced partial order is described (exactly) by x ≺ x, x ≺ y,

y ≺ y, z ≺ y, z ≺ z. Thus we have ∀p, q ∈ X (y ≺ p ∧ y ≺ q → p ◦ q) rather

trivially, since the only critical choices of p and q are p = q = y, yielding the

implication y ≺ y ∧ y ≺ y → y ◦ y which is clearly satisfied.

Definition For x ∈ X, we define the sets ι (x) = {y ∈ X; y ≺ x} and κ (x) =

{y ∈ X;x ≺ y} . Note that ι (x) ∩ κ (x) = {x}.

Remark x is a point ⇔ α(x) ⊆ κ(x).

Proposition 5.3 ι (a) ∩ ι (b) 6= ∅ ⇒ a ◦ b

Proof Suppose t ∈ ι (a)∩ ι (b). Since t ∈ ι (a), we have t ≺ a, which implies

∀y ∈ X (t ◦ y → a ◦ y). In particular this means t ◦ b→ a ◦ b. Since t ∈ ι (b),

and thus t ≺ b, by Corollary 4.3 we have t ◦ b. Thus it follows that a ◦ b. �

Proposition 5.4 If p is a point, then ι (p) = {p}.

Proof Suppose p is a point and b ∈ ι (p). Then b ≺ p. By Proposition 5.1, b

is a point. Since b ≺ p, then b ◦ p, so by Proposition 5.2 we have that b = p.

Thus ι (p) ⊆ {p}. Clearly p ∈ ι (p), so {p} ⊆ ι (p), whence ι (p) = {p}. �
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The converse is not true. In the example conjunctive space given above, the

element y satisfies ι (y) = {y} , yet y is not a point.

Proposition 5.5 ι (a) = ι (b)↔ a = b

Proof Suppose ι (a) = ι (b). Then

{y ∈ X;∀z ∈ X (y ◦ z → a ◦ z)} = {y ∈ X;∀z ∈ X (y ◦ z → b ◦ z)}. Since

clearly a ∈ {y ∈ X;∀z ∈ X (y ◦ z → a ◦ z)}, we have

a ∈ {y ∈ X; ∀z ∈ X (y ◦ z → b ◦ z)}, and thus ∀z ∈ X (a ◦ z → b ◦ z).

Since clearly b ∈ {y ∈ X;∀z ∈ X (y ◦ z → b ◦ z)}, we have

b ∈ {y ∈ X; ∀z ∈ X (y ◦ z → a ◦ z)}, and thus ∀z ∈ X (b ◦ z → a ◦ z),

whence ∀z ∈ X (a ◦ z ↔ b ◦ z), and thus a = b. �

Proposition 5.6 x ≺ y if and only if ι (x) ⊆ ι (y) .

Proof (⇒) Suppose x ≺ y. Fix z ∈ ι(x). Then z ≺ x, and since x ≺ y, we

have z ≺ y and thus z ∈ ι(y), whence ι (x) ⊆ ι (y) . (⇐) Suppose ι (x) ⊆ ι (y) .

Clearly x ∈ ι (x) , hence x ∈ ι (y) , thus x ≺ y. �

Remark A conjunctive space (X, ◦) induces a category CX,◦. The objects of

CX,◦ are the members of X. For a pair of (possibly identical) objects x and

y, we construct a single arrow from x to y if x ≺ y; otherwise there are no

arrows from x to y. Then CX,◦ is a category. We then define a functor F from

CX,◦ to the category Set. F takes each object o ∈ C to ι(o) in Set, and takes

each arrow x→ y (i.e. x ≺ y) to the arrow ι(x)→ ι(y) (i.e. ι(x) ⊆ ι(y)).

Proposition 5.7 x is a point if and only if ∀y ∈ X (x ◦ y ↔ x ≺ y)
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Proof (⇒) Suppose x is a point. Then by definition of point, we have

immediately ∀y ∈ X (x ◦ y → x ≺ y) . Now fix y ∈ X such that x ≺ y. By

Corollary 4.3, we have x ◦ y, thus ∀y ∈ X (x ◦ y ← x ≺ y) , whence ∀y ∈

X (x ◦ y ↔ x ≺ y) .

(⇐) Suppose ∀y ∈ X (x ◦ y ↔ x ≺ y) . It is immediate that

∀y ∈ X (x ◦ y → x ≺ y) , thus x is a point. �

Proposition 5.8 If y ∈ X, then
⋂

x∈α(y)

α (x) ⊆ α (y) .

Proof Suppose y ∈ X. Since y ∈ α(y), we have
⋂

x∈α(y)

α (x) ⊆ α (y) . �

Proposition 5.9 p is a point ⇔ α (p) =
⋂

x∈α(p)

α (x)

Proof (⇒) Suppose p is a point. Fix x ∈ α (p) . Then p ◦ x, and since p is

a point, we have p ≺ x. This means α(p) ⊆ α(x). Since x was an arbitrary

member of α(p), we have α (p) ⊆
⋂

x∈α(p)

α (x) .

Next, by Proposition 5.8, we have
⋂

x∈α(p)

α (x) ⊆ α (p) . We saw earlier

that α (p) ⊆
⋂

x∈α(p)

α (x) , so we have α (p) =
⋂

x∈α(p)

α (x) .

(⇐) Suppose α (p) =
⋂

x∈α(p)

α (x) . Fix y such that p ◦ y. This means y ∈

α(p), so
⋂

x∈α(p)

α (x) ⊆ α(y). Since α(p) =
⋂

x∈α(p)

α (x) , we get α(p) ⊆ α(y),

which means p ≺ y. Thus p is a point. �

Remark In Example 1, every x ∈ X is a point.

In Example 2, x is a point if and only if it is a subset of any set which it

meets.
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In Example 3, for any point N, if
⋂
n∈N

n 6= ∅ is nonempty, it is a singleton

set. Indeed, suppose {a, b} ⊆
⋂
n∈N

n 6= ∅ for some a 6= b. Take N1 = {{a}}.

Since N is a point, we have

∀N1 (∀n ∈ N∀n1 ∈ N1 (n ∩ n1 6= ∅)→ ∀n1 ∈ N1∃n ∈ N (n ⊆ n1)) , so in

particular ∀n ∈ N∀n1 ∈ {{a}} (n ∩ n1 6= ∅)→ ∀n1 ∈ {{a}}∃n ∈ N (n ⊆ n1) ,

or ∀n ∈ N (n ∩ {a} 6= ∅)→ ∃n ∈ N (n ⊆ {a}) . Since ∀n ∈ N (n ∩ {a} 6= ∅) ,

we get ∃n ∈ N (n ⊆ {a}) . Let n0 be such an n. Then n0 ⊆ {a}. Since

{a, b} ⊆
⋂
n∈N

and
⋂
n∈N

n ⊆ n0 ⊆ {a}, it follows that {a, b} ⊆ {a}, which is

absurd. Thus
⋂
n∈N

n cannot contain more than one distinct member. Since⋂
n∈N

n 6= ∅,
⋂
n∈N

n is a singleton set.

6 Nests

In the following all chains are members of Φ (X, ◦).

Definition We define a relation � on chains satisfying C1�C2 if and only

if ∀x1 ∈ C1∀x2 ∈ C2 (x1 ◦ x2) . This relation is symmetric and reflexive.

Remark C1�C2 if and only if

C1 ⊆
⋂
x∈C2

α(x), (6.1)

or equivalently

C2 ⊆
⋂
x∈C1

α(x). (6.2)
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Definition We define a relation on chains satisfying C1 ∼ C2 if and only

∀C3 (C1�C3 ↔ C2�C3) .

Remark C1 ∼ C2 if and only if

⋂
x∈C1

α(x) =
⋂
x∈C2

α(x). (6.3)

Proposition 6.1 ∼ is an equivalence relation on the set of chains.

Proof (1) Let C1 be a chain. Since

(∀x1 ∈ C1∀x3 ∈ C3 (x1 ◦ x3)) ↔ (∀x2 ∈ C1∀x3 ∈ C3 (x2 ◦ x3)) for every

chain C3, we have C1 ∼ C1.

(2) Let C1 and C2 be chains such that C1 ∼ C2. Then

(∀x1 ∈ C1∀x3 ∈ C3 (x1 ◦ x3)) ↔ (∀x2 ∈ C2∀x3 ∈ C3 (x2 ◦ x3)) for every

chain C3. This implies

(∀x2 ∈ C2∀x3 ∈ C3 (x2 ◦ x3)) ↔ (∀x1 ∈ C1∀x3 ∈ C3 (x1 ◦ x3)) for every

chain C3, which means C2 ∼ C1.

(3) Suppose C1 ∼ C2 and C2 ∼ C3. Then (∀x1 ∈ C1∀x ∈ C (x1 ◦ x)) ↔

(∀x2 ∈ C2∀x ∈ C (x2 ◦ x)) and

(∀x2 ∈ C2∀x ∈ C (x2 ◦ x)) ↔ (∀x3 ∈ C3∀x ∈ C (x3 ◦ x)) for every chain

C. Stringing these together we get

(∀x1 ∈ C1∀x ∈ C (x1 ◦ x)) ↔ (∀x3 ∈ C3∀x ∈ C (x3 ◦ x)) for every chain

C. This means C1 ∼ C3.�

Definition By nest we mean an equivalence class of chains.
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Consider the collection of nests Y = {C̄;C ∈ Φ (X, ◦)}. For C̄1, C̄2 ∈ Y,

define the relation C̄1◦̄C̄2 if and only if C1�C2. Then (Y, ◦̄) is a conjunctive

space.

7 Defining a Conjunctive Relation On Nests

Notation We write X̄ to denote the set of nests in the conjunctive space

(X, ◦) induced by partial order ≺.

Notation By C̄ is meant the nest containing the chain C.

Definition We define a relation on nests satisfying C̄1◦̄C̄2 if ∀x1 ∈ C1∀x2 ∈

C2 (x1 ◦ x2).

Proposition 7.1 ◦̄ is a conjunctive relation on X̄, and therefore
(
X̄, ◦̄

)
is

a conjunctive space.

Proof (1) Suppose C̄1 is a nest. Then since C1 is a chain, ∀x1 ∈ C1∀x2 ∈

C1 (x1 ◦ x2), which means C̄1◦̄C̄1. (2) Suppose C̄1 and C̄2 are nests such that

C̄1◦̄C̄2. Then ∀x1 ∈ C1∀x2 ∈ C2 (x1 ◦ x2), which means ∀x2 ∈ C2∀x1 ∈

C1 (x2 ◦ x1), hence C̄2◦̄C̄1. (3) Suppose C̄1 and C̄2 are nests such that

C̄1◦̄C̄3 ↔ C̄2◦̄C̄3 for every nest C̄3. Then ∀x1 ∈ C1∀x3 ∈ C3 (x1 ◦ x3) ↔

∀x2 ∈ C2∀x3 ∈ C3 (x2 ◦ x3) for every nest C̄3, hence C̄1 = C̄2.�

Remark Under the induced partial order ≺̄, C̄1≺̄C̄2 if and only if
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∀C3 ((∀x ∈ C1∀y ∈ C3 (x ◦ y))→ (∀z ∈ C2∀w ∈ C3 (z ◦ w))). Alternatively,

Under the induced partial order ≺̄, C̄1≺̄C̄2 if and only if

∀C1 ∈ C̄1∀C2 ∈ C̄2

( ⋂
x∈C1

α(x) ⊆
⋂
x∈C2

α(x)

)
. (7.1)

Equivalently, C̄1≺̄C̄2 if and only if

⋃
C∈C̄1

⋂
x∈C

α(x) ⊆
⋂
C∈C̄2

⋂
x∈C

α(x). (7.2)

This suggests an alternative definition of a nest-point: P̄ ∈ X̄ is a nest-point

if and only if

∀Q̄ ∈ X̄

P̄ ◦̄Q̄⇒ ⋃
C∈P̄

⋂
x∈C

α(x) ⊆
⋂
C∈Q̄

⋂
x∈C

α(x)

 . (7.3)

Remark The conjunctive space of nests
(
X̄, ◦̄

)
features a definition of a nest

that is a point. From the definition, a nest C̄ is a point, i.e. a nest-point if and

only if it satisfies ∀C̄1, C̄2 ∈ X̄
(
C̄◦̄C̄1 ∧ C̄◦̄C̄2 → C̄1◦̄C̄2

)
. Equivalently, for

every choice of chains C1, C2 ∈ Φ (X, ◦) , ∀x1 ∈ C∀x2 ∈ C1 (x1 ◦ x2) ∧ ∀y1 ∈

C∀y2 ∈ C2 (y1 ◦ y2) implies ∀z1 ∈ C1∀z2 ∈ C2 (z1 ◦ z2) .
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8 Rational Conjunctive Space

We now consider an interesting example, namely the rational conjunctive

space referred to in Section 2. Recall the definition: LetX = {{p ∈ Q;λ(x) 6

p 6 ρ(x)};λ(x), ρ(x) ∈ Q, λ(x) 6 ρ(x)}, and for any x1, x2 ∈ X, define

the relation x1 ◦ x2 if and only if x1 ∩ x2 6= ∅, i.e. max (λ (x1) , λ (x2)) 6

min (ρ (x1) , ρ (x2)) . If this inequality holds, then in fact x1 ∩ x2 = {p ∈

Q; max (λ (x1) , λ (x2)) 6 p 6 min (ρ (x1) , ρ (x2))} and x1 ∩ x2 ∈ X. The

partial order ≺ satisfies x1 ≺ x2 if and only if x1 ⊆ x2. A chain is any nested

(in the sense of set inclusion) collection of members of X. Recall that by

definition,

C1 ∼ C2 ⇔

∀C3 ∈ Φ (X, ◦) (∀x1 ∈ C1∀x3 ∈ C3 (x1 ∩ x3 6= ∅)↔ ∀x2 ∈ C2∀x3 ∈ C3 (x2 ∩ x3 6= ∅)) .

(8.1)

Definition For any chains C, σ(C) =

(
sup
x∈C

λ(x), inf
x∈C

ρ(x)

)
.

Proposition 8.1 For any chains C1 and C2 if C1 ∼ C2, then σ(C1) = σ(C2).

Proof Suppose C1 ∼ C2. Let L1 = sup
x∈C1

λ(x) and R1 = inf
x∈C1

ρ(x), and let

L2 = sup
y∈C2

λ(y). Suppose for a contradiction that L1 6= L2. Without loss of

generality we can assume L1 < L2. Fix ε > 0 such that L1 < L2 − ε. We can

find some y ∈ C2 such that L2−ε < λ (y) , thus y ⊂ (L2 − ε,∞) . We can find

q1, q2 ∈ Q such that L1 6 q1 6 q2 6 L2− ε. Now take C3 ∈ Φ (X, ◦) to be the
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single-member chain {{p ∈ Q; q1 6 p 6 q2}}. Clearly {p ∈ Q; q1 6 p 6 q2} ⊆

[q1, q2] ⊆ [L1, L2 − ε], and since y does not meet [L1, L2 − ε], we have that

y∩{p ∈ Q; q1 6 p 6 q2} = ∅. However, y∩x 6= ∅ for every x ∈ C1, so it is not

true that ∀x1 ∈ C1∀x3 ∈ C3 (x1 ∩ x3 6= ∅)↔ ∀x2 ∈ C2∀x3 ∈ C3 (x2 ∩ x3 6= ∅)

for a contradiction. Thus L1 = L2, i.e. sup
x∈C1

λ(x) = sup
y∈C2

λ(y). A similar

argument gives inf
x∈C1

ρ(x) = inf
y∈C2

ρ(y), thus σ(C1) = σ(C2). �

Proposition 8.2 C1 ∼ C2 ⇒ ∀x ∈ X (∀y ∈ C1 (x ⊆ y)↔ ∀z ∈ C2 (x ⊆ z)) .

Proof Suppose C1 ∼ C2. Suppose x ∈ X such that ∀y ∈ C1 (x ⊆ y) . For

a contradiction suppose x 6⊆ q for some q ∈ C2. Fix nonempty p such that

p ⊆ x\q. Take C3 = {p}. Then since C1 ∼ C2, ∀x1 ∈ C1 (x1 ∩ p 6= ∅)↔ ∀x2 ∈

C2 (x2 ∩ p 6= ∅) . Clearly ∀x1 ∈ C1 (x ⊆ x1) , and p ⊆ x, so ∀x1 ∈ C1 (p ⊆ x1) ,

thus ∀x1 ∈ C1 (x1 ∩ p 6= ∅) , whence ∀x2 ∈ C2 (x2 ∩ p 6= ∅) . Recall q ∈ C2, so

we get q∩ p 6= ∅. But q∩ p ⊆ q∩ (x \ q) = ∅, so q∩ p = ∅ for a contradiction.

Therefore x ⊆ q. Thus ∀x ∈ X (∀y ∈ C1 (x ⊆ y)→ ∀z ∈ C2 (x ⊆ z)) . A

similar argument gives ∀x ∈ X (∀z ∈ C2 (x ⊆ z))→ ∀x ∈ X (∀y ∈ C1 (x ⊆ y)) ,

hence ∀x ∈ X (∀y ∈ C1 (x ⊆ y)↔ ∀z ∈ C2 (x ⊆ z)) . �

Remark Each nest that is a point corresponds to a real number.

9 Contact

Email: kerry@kerrysoileau.com
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